Self-Labelling via simultaneous clustering and representation learning

YUKI M. ASANO* MANDELA PATRICK* CHRISTIAN RUPPRECHT ANDREA VEDALDI

ICLR EML 2021; PAPER ORIGINALLY PUBLISHED IN NEURIPS'20

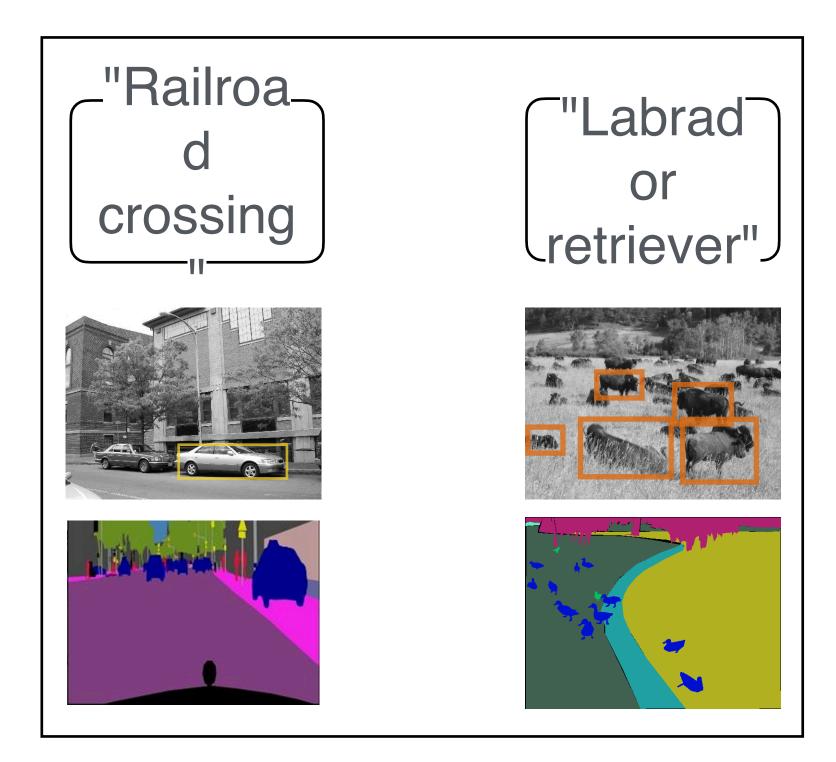
yuki@robots.ox.ac.uk, @y_m_asano

VGG FACEBOOK

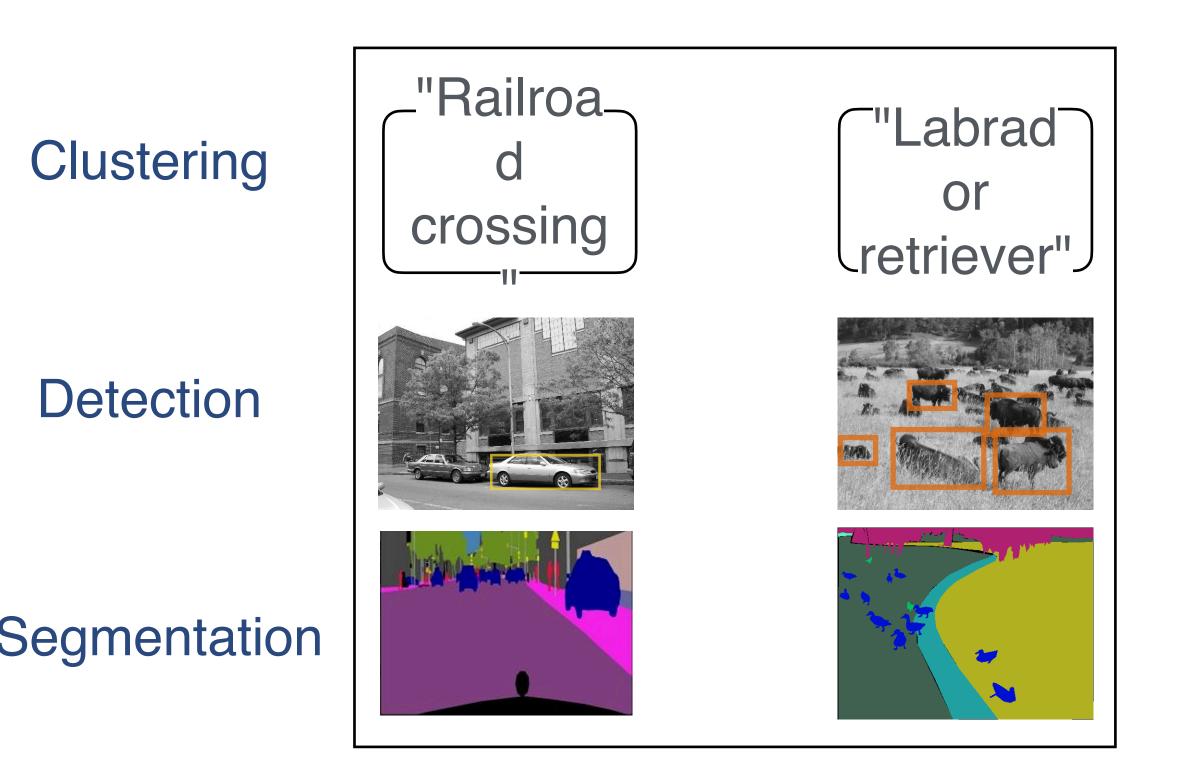
Manual annotations for the data are limiting.

Data is often cheap

But manual annotations are expensive



Replacing manual annotations by self-supervised learning.



Images

CliqueCNN (Bautista, NeurIPS'16) DeepCluster (Caron, ECCV'18) IIC (Ji, ICCV'19) SeLa (Asano, ICLR'19) SCAN (Gansbeke, ECCV'20) and more

SSOD (Afouras arxiv'21)

MaskContrast (Gansbeke arxiv'21)

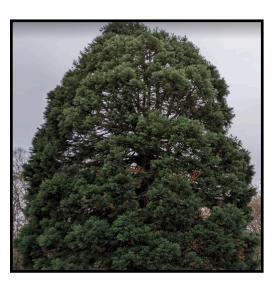
Video

[Sight from Sound (Owens ECCV'16)] XDC (Alwassel NeurIPS'20) SeLaVi (Asano NeurIPS'20)

Boxes: SSOD (Afouras arxiv'21) [Heatmaps]: Objects that sound (<u>Arandjelović</u> ECCV'18) DMC (Hu CVPR'19)

DSOL (Hu NeurIPS'20)

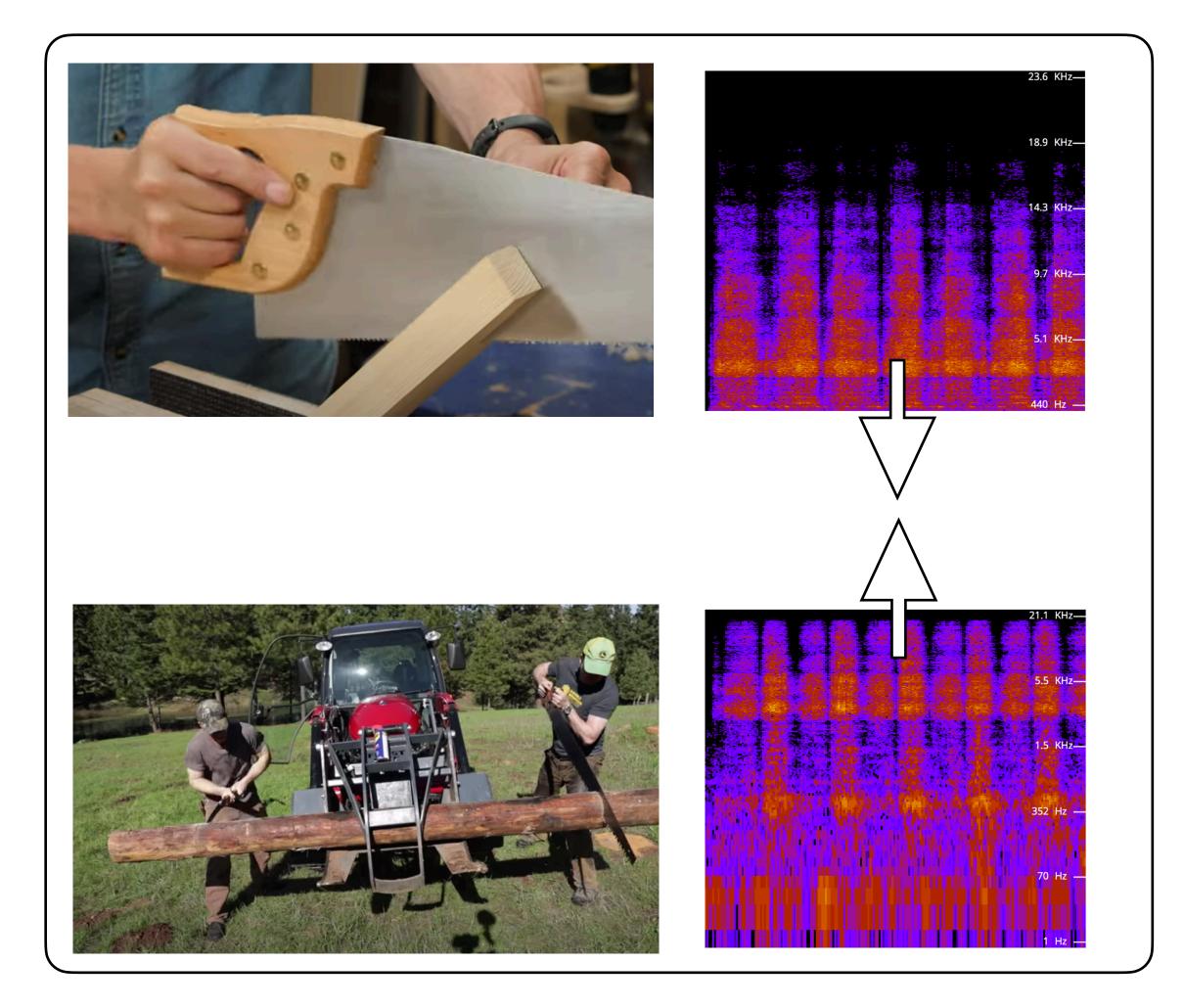
Can we label the dataset without humans?



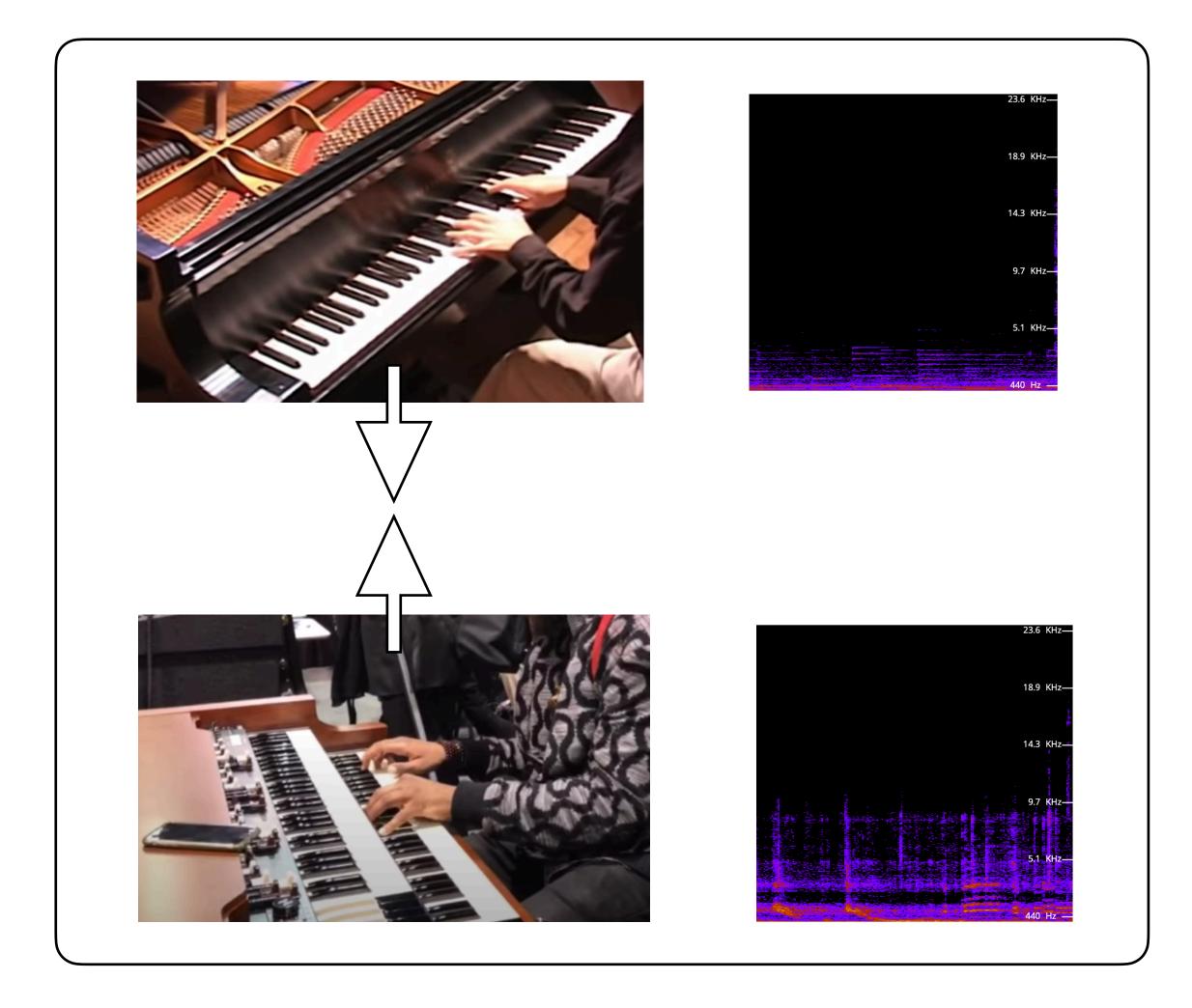
?

Label B

Multiple modalities can help us infer semantic similarity.



UNIVERSITY OF OXFORD https://www.youtube.com/watch?v={ZIS8t8_nAHo, tvVYdaykaZM, Kt8_u_i-anQ, J4X6tc1HYts}

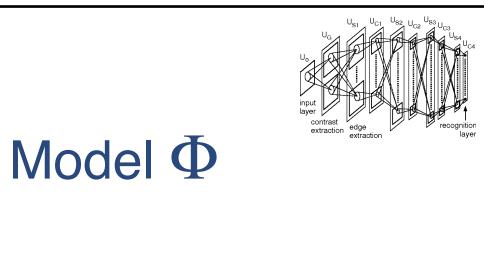


5

Learning with labels.

X

Minimise the cross-entropy loss w.r.t to labels

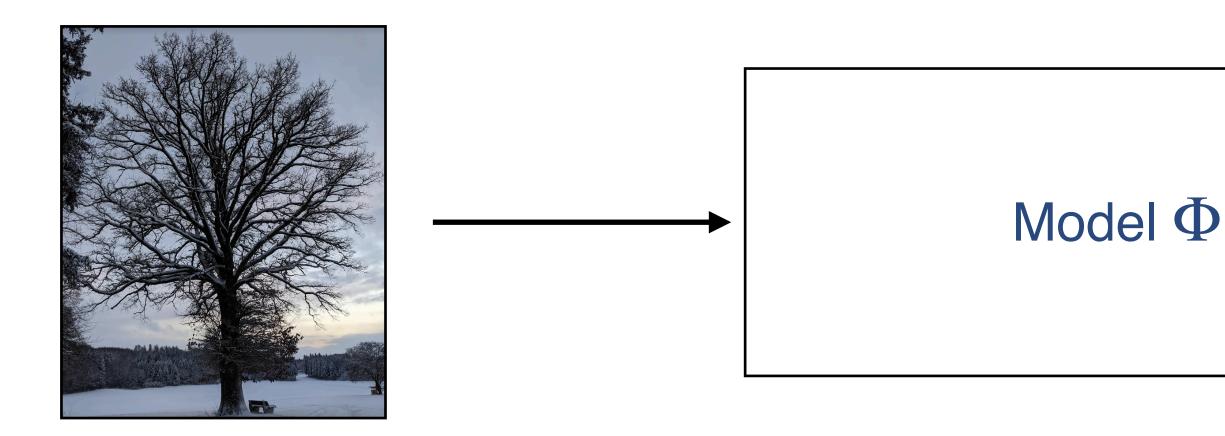


 $p(y \mid \mathbf{x})$

What if we don't have labels?

y_{gt}

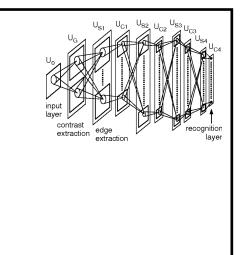
Learning without labels.



X

(Minimise the cross-entropy loss w.r.t to labels)

(optimize pseudolabels)



7

y_{gt}

How can we optimize labels?

If we had ground-truth labels:

 $\min_{y, \Phi} L(y, \Phi),$ where $L(y, \Phi) = \frac{1}{N} \sum_{i=1}^{N} \log p(y_i | \mathbf{x}_i, \Phi)$

- L is the loss (cost) function
- + Φ is the deep neural network model
- y are the labels

UNIVERSITY OF OXFORD Asano et al., ICLR 2020

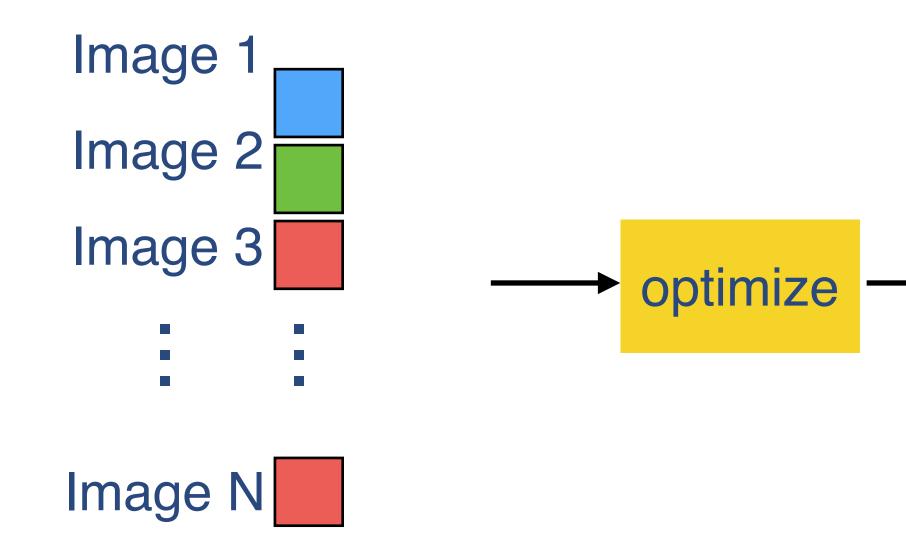
Idea: Representing the labels as an assignment
table *q*:
$$L(q, \Phi) = \frac{1}{N} \sum_{i=1}^{N} \sum_{y} q(y | \mathbf{x}_i) \log p(y | \mathbf{x}_i, \Phi)$$
But: The trivial solution for *q* is to set all labels to be the

Solution: Force all labels to be used an *fixed* number of times and pose as optimal transport.

$$\min_{q,\Phi} L(q,\Phi) \quad \text{s.t.} \quad \sum_{i=1}^{N} q(y \mid \mathbf{x}_i) = \frac{N}{K},$$

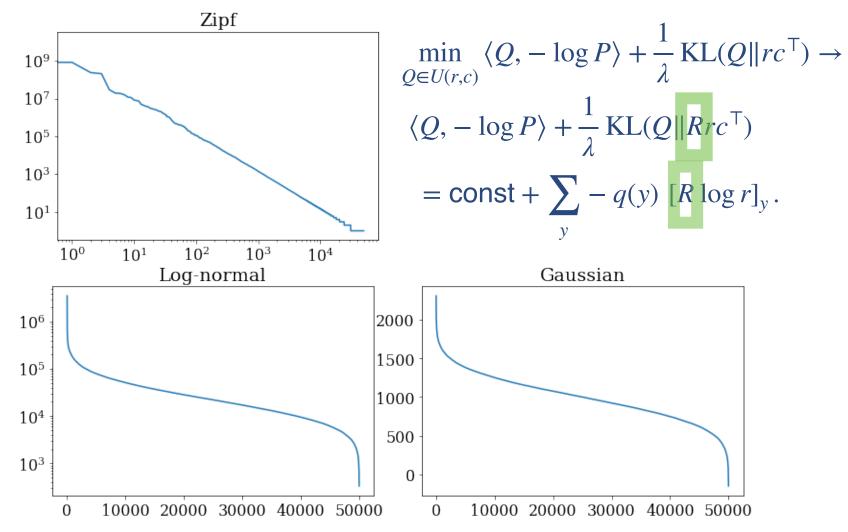
with the iterative solution $Q_{ij} = u_i p^{\lambda} v_j$

Solution: "Fixed marginal" label optimization



Self-labelling via simultaneous clustering and representation learning. Asano et al., ICLR 2020

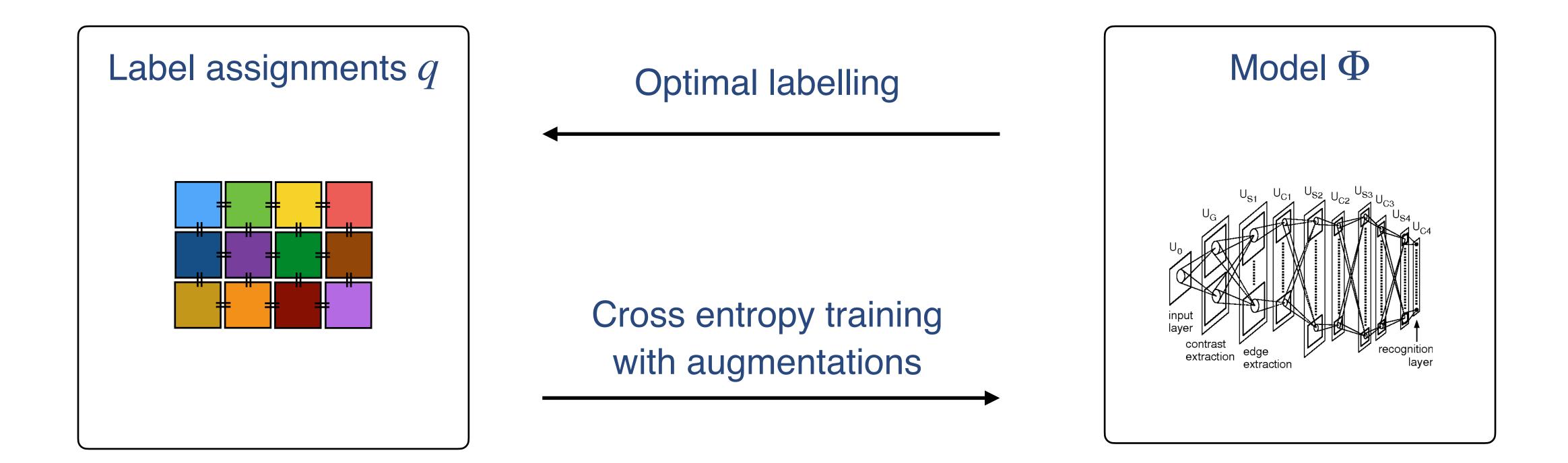
Solution: "Fixed marginal" label optimization (Sinkhorn-Knopp)



After

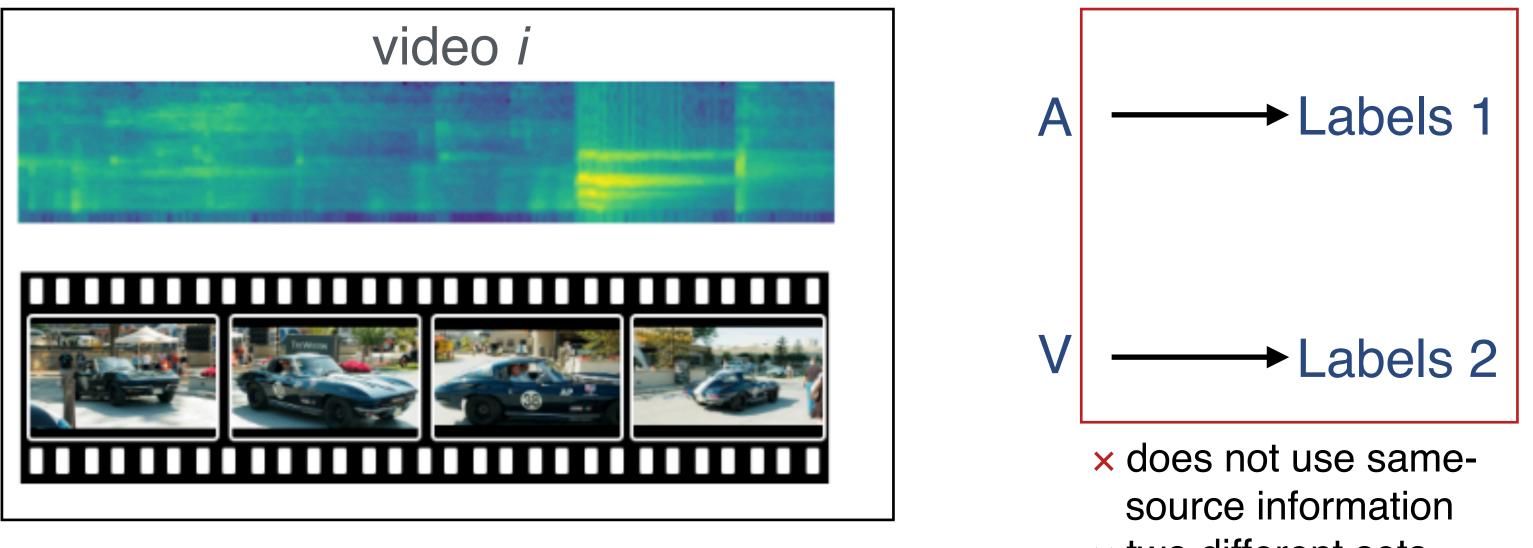
10

Algorithm



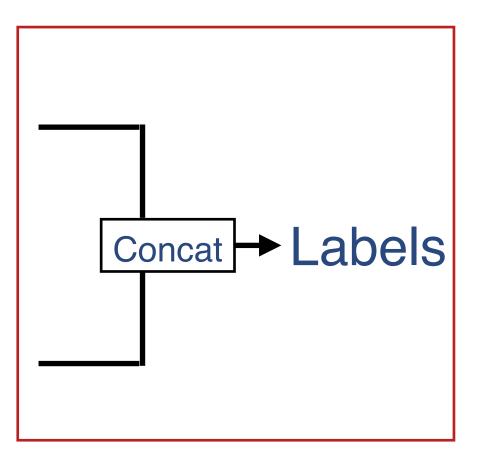
OXFORD Self-labelling via simultaneous clustering and representation learning. Asano et al., ICLR 2020

Clustering multi-modal data



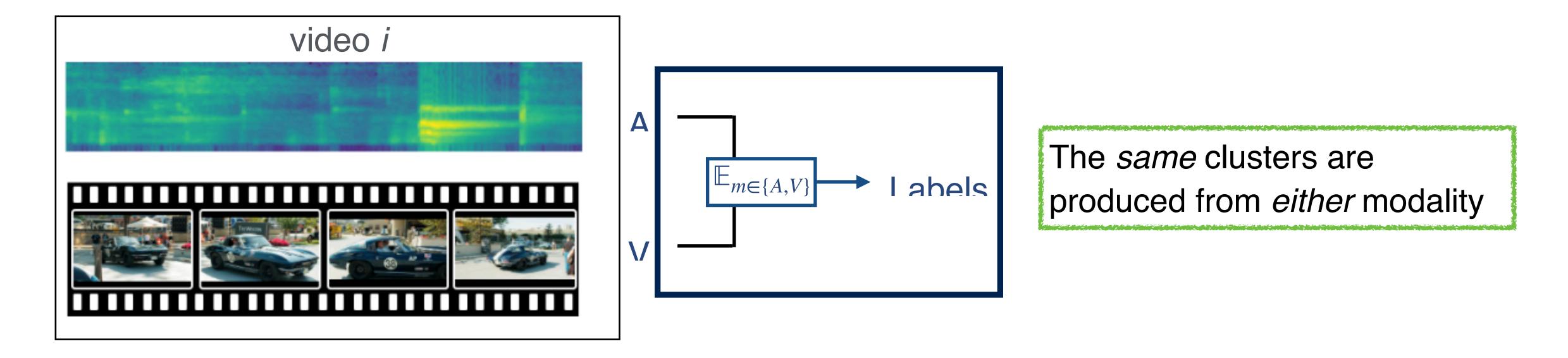
Labelling unlabelled videos from scratch with multi-modal self-supervision. Asano et al. NeurIPS 2020

× two different sets of clusters



× concatenation can just rely on stronger modality and ignore the other

Our idea: view each modality as an augmentation.

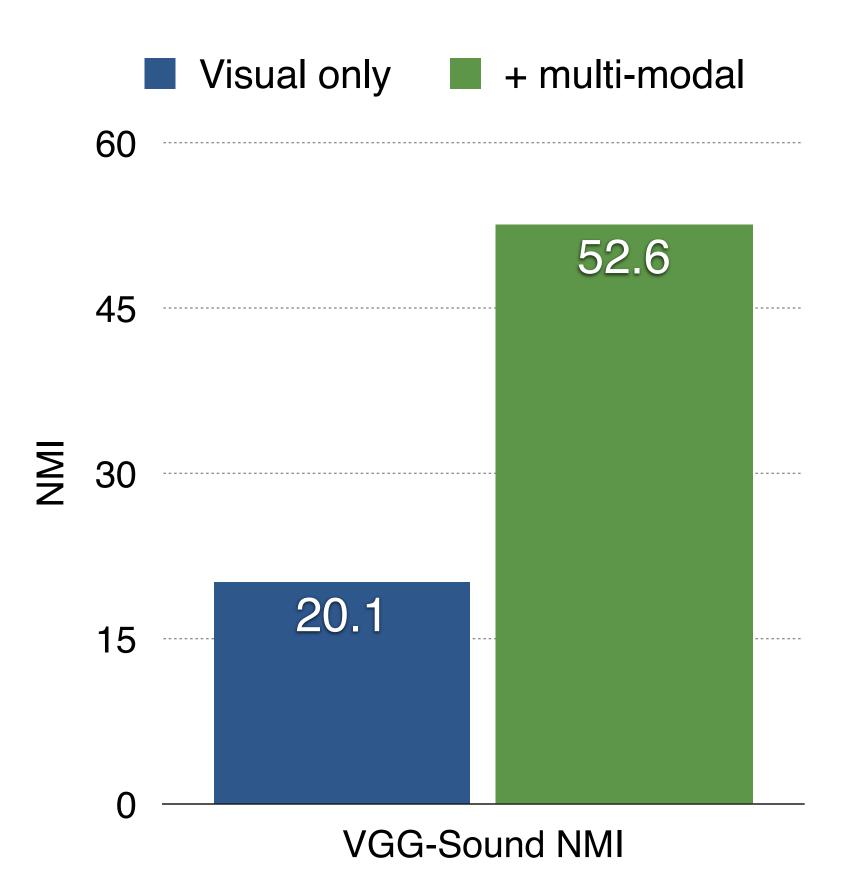


 $E(\Phi,q)$ c

Labelling unlabelled videos from scratch with multi-modal self-supervision. Asano et al. NeurIPS 2020

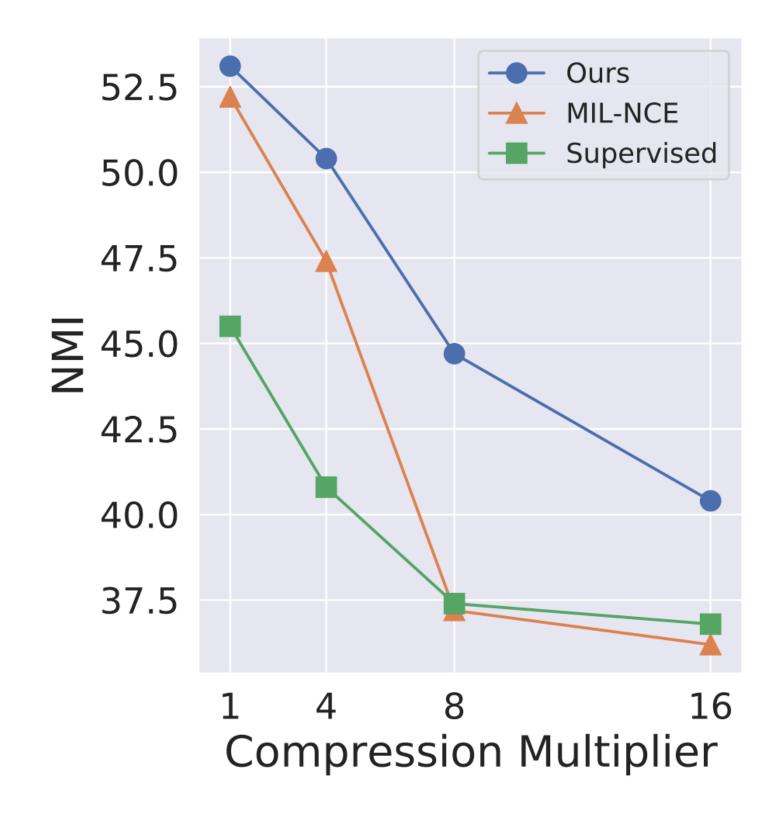
$$\sum_{i,c,m} q(c \mid i) \left[\log \operatorname{sftmx} \Phi_a(\operatorname{audio}(\mathbf{x}_i)) + \log \operatorname{sftmx} \Phi_v(\operatorname{video}(\mathbf{x}_i)) + \log \operatorname{sftmx} \Phi_v(\operatorname{video}(\mathbf{$$

Multi-modality clustering is key.



Clustering works much better when also using the audio.

Labelling unlabelled videos from scratch with multi-modal self-supervision. Asano et al. NeurIPS 2020



Our clustering formulation degrades less quickly thanks to treating audio equally.

Simultaneous clustering and representation learning is better.

60

45

30

15

0

NMI

Ours (train VGG-Sound)

VS

pre-train + K-means:

DPC (train Kinetics-400)

Video representation learning by dense predictive coding, Han, Xie, and Zisserman, ICCV, 2019

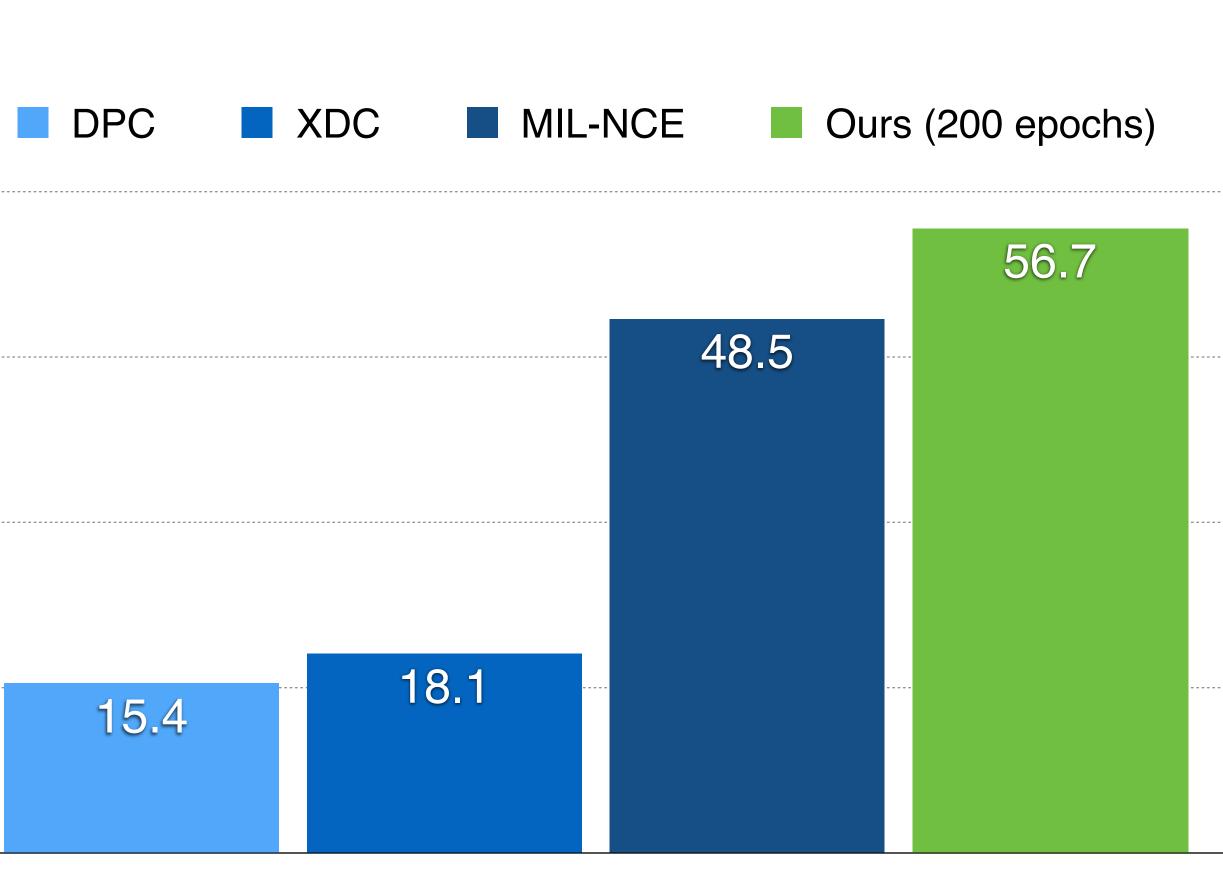
XDC (train Kinetics-400)

Self-supervised learning by cross-modal audio-video clustering, Alwassel, Mahajan, Torresani, Ghanem, and Tran, arXiv, u

MIL-NCE (train on HowTo100M)

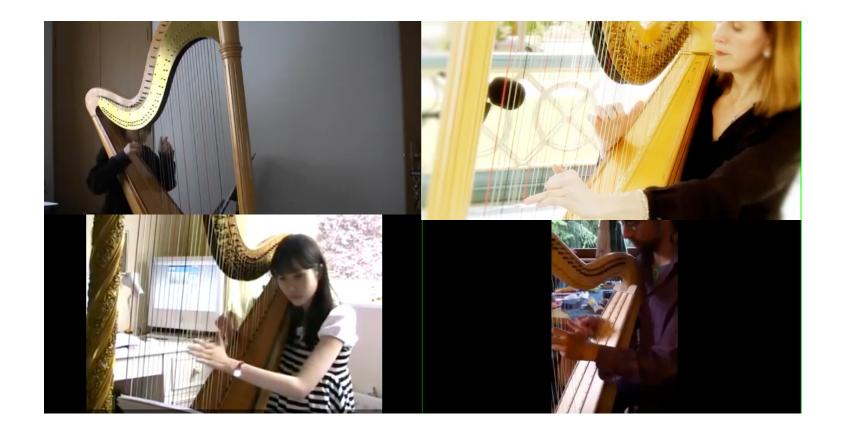
End-to-end learning of visual representations from uncurated instructional videos, Miech, Alayrac, Smaira, Laptev, Sivic, and Zisserman, arXiv, 2019

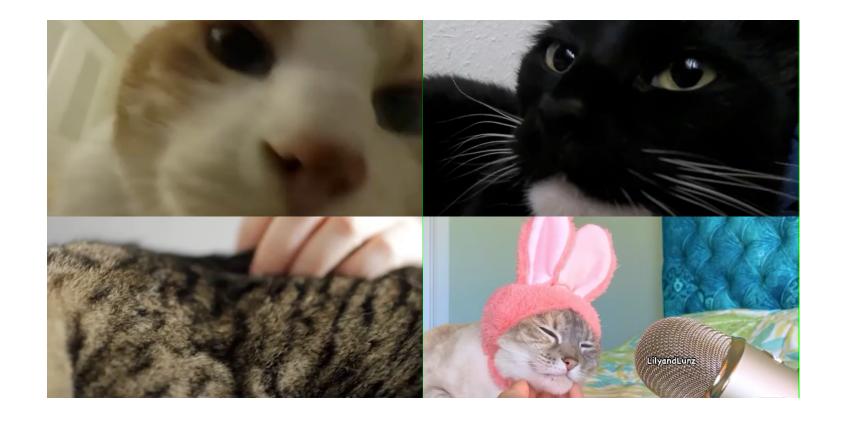
Labelling unlabelled videos from scratch with multi-modal self-supervision. Asano et al. NeurIPS 2020



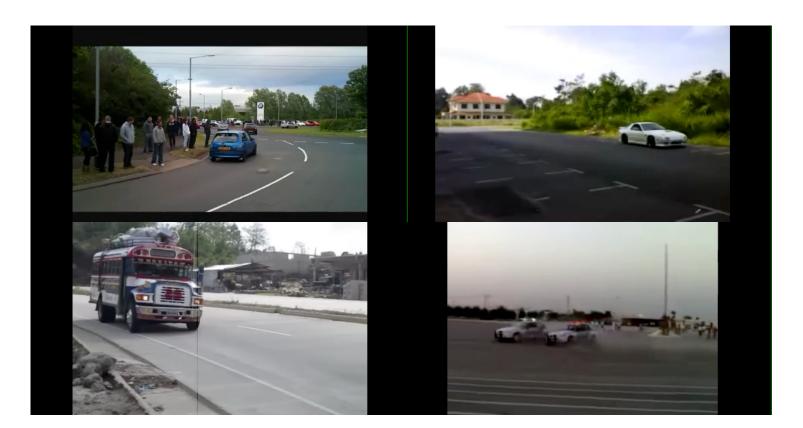
VGG-Sound NMI

Clusters are highly consistent thanks to utilising both modalities.





Labelling unlabelled videos from scratch with multi-modal self-supervision. Asano et al. NeurIPS 2020



View all clusters here: https://www.robots.ox.ac.uk/~vgg/research/selavi/#der

