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Manual annotations for the data are limiting.

Data is often chea But manual annotations are expensive
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Replacing manual annotations by self-supervised learning.
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Images

CliqgueCNN (Bautista, NeurlPS’16)
DeepCluster (Caron, ECCV’18)
IIC (Ji, ICCV’19)

SelLa (Asano, ICLR’19)

SCAN (Gansbeke, ECCV’20)

and more

SSOD (Afouras arxiv'21)

MaskContrast (Gansbeke arxiv’21)

Video

[Sight from Sound (Owens ECCV’16)]
XDC (Alwassel NeurlPS’20)
SelLaVi (Asano NeurlPS’20)

Boxes:
SSOD (Afouras arxiv’'21)

[Heatmaps]:

Objects that sound (Arandjelovi¢ ECCV’18)
DMC (Hu CVPR’19)

DSOL (Hu NeurlPS’20)



https://arxiv.org/search/cs?searchtype=author&query=Arandjelovi%C4%87%2C+R

Can we label the dataset without humans?
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Multiple modalities can help us infer semantic similarity.
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https://www.youtube.com/watch?v=

Learning with labels.
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Learning without labels.
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How can we optimize labels”?

Idea: Representing the labels as an assignment

If we had ground-truth labels: table ¢:

min L(y, P), 1 &

@ L(g.®)=— ) ) q(y|x) logp(y|x, )

where N

1 & But: The trivial solution for g is to set all labels to be the
L(ya (I)) — N Z logp(yz ‘ Xia (I))
i=1

- L is the loss (cost) function Solution: Force all labels to be used an fixed
. @ is the deep neural network model number of times and pose as optimal transport.

.y are the labels

university o Self-labelling via simultaneous clustering and representation learning.
&7 OXFORD Agano et al., ICLR 2020




Solution: “Fixed marginal” label optimization

Self-labelling via simultaneous clustering and representation learning.
Asano et al., ICLR 2020



Solution: “Fixed marginal” label optimization (Sinkhorn-Knopp)

Intuition: Shuffle fixed set of labels around s.t. it best fits current model
Flexibly use any marginals:
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Algorithm

Label assignments g
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Optimal labelling

—

Cross entropy training

with augmentations
————————————————>

) OXFORD Self-labelling via simultaneous clustering and representation learning. Asano et al., ICLR 2020
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Clustering multi-modal data

video /
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Asano et al. NeurlPS 2020

Al —Labels 1
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x does not use same-
source information
x two different sets
of clusters

GE2 UNIVERSITY OF @ Labelling unlabelled videos from scratch with multi-modal self-supervision.
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Our idea: view each modality as an augmentation.

video /

' The same clusters are ;
.produced from either modality

E@®,q) Y qlc]i) [log sftmx @ (audio(x))) + log sftmx @ (video(x.))

1,cm

i UNIVERSITY OF @ Labelling unlabelled videos from scratch with multi-modal self-supervision.
& OXFORD Asano et al. NeurlPS 2020
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Multi-modality clustering is key.

B Visualonly M + multi-modal

VGG-Sound NMI

Clustering works much better when also using the audio.

Labelling unlabelled videos from scratch with multi-modal self-supervision.
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Our clustering formulation degrades less quickly
thanks to treating audio equally.

14



Simultaneous clustering and representation learning is better.

Ours (train VGG-Sound) W DPC M XDC M MIL-NCE W Ours (200 epochs)

VS

pre-train + K-means:

DPC (train Kinetics-400)

Video representation learning by dense predictive coding, Han, Xie, and  __
Zisserman, ICCV, 2019 = 30
Z

XDC (train Kinetics-400)

Self-supervised learning by cross-modal audio-video clustering,
Alwassel, Mahajan, Torresani, Ghanem, and Tran, arXiv, u 15

MIL-NCE (train on HowTo100M)

End-to-end learning of visual representations from uncurated
instructional videos, Miech, Alayrac, Smaira, Laptev, Sivic, and Zisserman, 0

arXiv, 2019 VGG-Sound NMI

G UNIVERSITY OF @ Labelling unlabelled videos from scratch with multi-modal self-supervision.
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Clusters are highly consistent thanks to utilising both modalities.
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Labelling unlabelled videos from scratch with multi-modal self-supervision.
Asano et al. NeurlPS 2020

View all clusters here: https://www.robots.ox.ac.uk/~vgg/research/selavi/#der



https://www.robots.ox.ac.uk/~vgg/research/selavi/#demo

