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Manual annotations for the data are limiting.

Scene parsing through ADE20K dataset. Zhou et al. CVPR 2017.

Data is often cheap But manual annotations are expensive
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Replacing manual annotations by self-supervised learning.
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Images Video
CliqueCNN (Bautista, NeurIPS’16) 
DeepCluster (Caron, ECCV’18) 
IIC (Ji, ICCV’19) 
SeLa (Asano, ICLR’19) 
SCAN (Gansbeke, ECCV’20) 
and more

MaskContrast (Gansbeke arxiv’21)

Boxes: 
SSOD (Afouras arxiv’21)


[Heatmaps]: 
Objects that sound (Arandjelović ECCV’18) 
DMC (Hu CVPR’19) 
DSOL (Hu NeurIPS’20)


SSOD (Afouras arxiv’21)

[Sight from Sound (Owens ECCV’16)] 
XDC (Alwassel NeurIPS’20) 
SeLaVi (Asano NeurIPS’20)

Clustering

Detection

Segmentation

https://arxiv.org/search/cs?searchtype=author&query=Arandjelovi%C4%87%2C+R
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Can we label the dataset without humans?

Label A

Label B

?
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Multiple modalities can help us infer semantic similarity.

https://www.youtube.com/watch?v={ZlS8t8_nAHo, tvVYdaykaZM, Kt8_u_i-anQ, J4X6tc1HYts}

https://www.youtube.com/watch?v=
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Learning with labels.

ygt

x

p(y |x)

p(y |x) = hy(Φ(x)) =
e⟨wy,Φ(x)⟩

∑K
k=1 e⟨wk,Φ(x)⟩

CE(Φ, h |y) = −
1
N

N

∑
i=1

log hyi
∘ Φ(xi)

Model Φ

What if we don't 
have labels?

Minimise the cross-entropy loss w.r.t to labels
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Learning without labels.

ygt

x

p(y |x)

p(y |x) = hy(Φ(x)) =
e⟨wy,Φ(x)⟩

∑K
k=1 e⟨wk,Φ(x)⟩

CE(Φ, h |y) = −
1
N

N

∑
i=1

log hyi
∘ Φ(xi)

Model Φ

(Minimise the cross-entropy loss w.r.t to labels)                  +                        (optimize pseudolabels) 



8

How can we optimize labels?

If we had ground-truth labels:


•  is the loss (cost) function

•  is the deep neural network model

•  are the labels


,


  where 

min
y, Φ

L(y, Φ)

L(y, Φ) =
1
N

N

∑
i=1

log p(yi |xi, Φ)

L
Φ
y

But: The trivial solution for  is to set all labels to be the q

Solution: Force all labels to be used an fixed 
number of times and pose as optimal transport.


,


with the iterative solution 

min
q,Φ

L(q, Φ) s.t.
N

∑
i=1

q(y |xi) =
N
K

Qij = uipλvj

Idea: Representing the labels as an assignment 
table :q

L(q, Φ) =
1
N

N

∑
i=1

∑
y

q(y |xi) log p(y |xi, Φ)

Self-labelling via simultaneous clustering and representation learning.  
Asano et al., ICLR 2020
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Solution: “Fixed marginal” label optimization

Image 1  

Image 2  

Image 3  

 

 

 

 

Image N

...... optimize  

Self-labelling via simultaneous clustering and representation learning.  
Asano et al., ICLR 2020  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Intuition: Shuffle fixed set of labels around s.t. it best fits current model

optimize   ......

Image 1  

Image 2  

Image 3  

 

 

 

 

Image N

...

Cost

Before After

Flexibly use any marginals:

min
Q∈U(r,c)

⟨Q, − log P⟩ +
1
λ

KL(Q∥rc⊤) →

= const + ∑
y

− q(y) [R log r]y .

⟨Q, − log P⟩ +
1
λ

KL(Q∥Rrc⊤)

Solution: “Fixed marginal” label optimization (Sinkhorn-Knopp)



Model  ΦLabel assignments q
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Algorithm

Cross entropy training  
with augmentations

Optimal labelling

Self-labelling via simultaneous clustering and representation learning. Asano et al., ICLR 2020



Clustering multi-modal data
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× does not use same- 
   source information 
× two different sets  
   of clusters

× concatenation can just 
   rely on stronger 
   modality and ignore  
   the other

Labels 1

Labels 2

A

V

Concat Labels

video i

Labelling unlabelled videos from scratch with multi-modal self-supervision.  
Asano et al. NeurIPS 2020



Our idea: view each modality as an augmentation.
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video i

Labels𝔼m∈{A,V}

A

V

E(Φ, q) ∝ ∑
i,c,m

q(c | i) [log sftmx
c

Φa(audio(xi)) + log sftmx
c

Φv(video(xi))]

The same clusters are 
produced from either modality

Labelling unlabelled videos from scratch with multi-modal self-supervision.  
Asano et al. NeurIPS 2020
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Multi-modality clustering is key.
N

M
I

0
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60

VGG-Sound NMI

52.6

20.1

Visual only + multi-modal

Labelling unlabelled videos from scratch with multi-modal self-supervision.  
Asano et al. NeurIPS 2020

Clustering works much better when also using the audio. Our clustering formulation degrades less quickly  
thanks to treating audio equally.
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Simultaneous clustering and representation learning is better.

Ours (train VGG-Sound)


                      vs


pre-train + K-means:


DPC (train Kinetics-400)

Video representation learning by dense predictive coding, Han, Xie, and 
Zisserman, ICCV, 2019


XDC (train Kinetics-400)

Self-supervised learning by cross-modal audio-video clustering, 
Alwassel, Mahajan, Torresani, Ghanem, and Tran, arXiv, u


MIL-NCE (train on HowTo100M)

End-to-end learning of visual representations from uncurated 
instructional videos, Miech, Alayrac, Smaira, Laptev, Sivic, and Zisserman,  
arXiv, 2019

N
M

I

0

15

30

45

60

VGG-Sound NMI

56.7

48.5

18.115.4

DPC XDC MIL-NCE Ours (200 epochs)

Labelling unlabelled videos from scratch with multi-modal self-supervision.  
Asano et al. NeurIPS 2020



Clusters are highly consistent thanks to utilising both modalities.

View all clusters here: https://www.robots.ox.ac.uk/~vgg/research/selavi/#demo 
Labelling unlabelled videos from scratch with multi-modal self-supervision.  
Asano et al. NeurIPS 2020

https://www.robots.ox.ac.uk/~vgg/research/selavi/#demo

