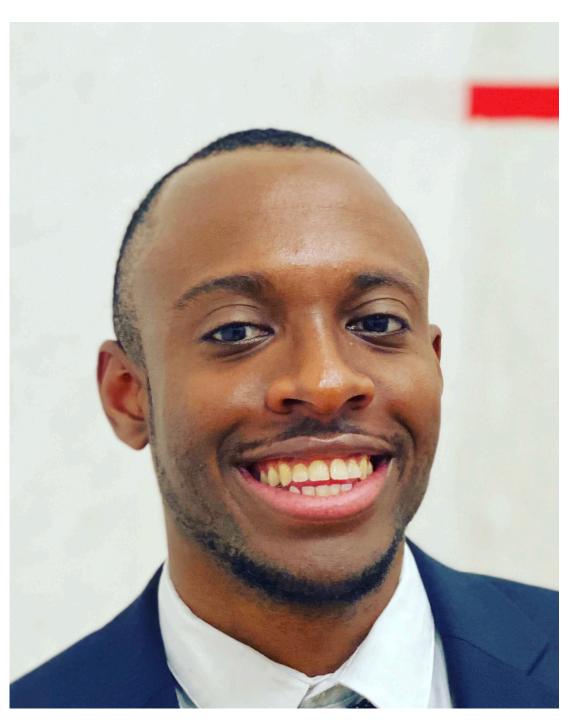
The PhD Playbook Lessons learned during my PhD experience that you can apply

Mandela Patrick, 05/10/2021

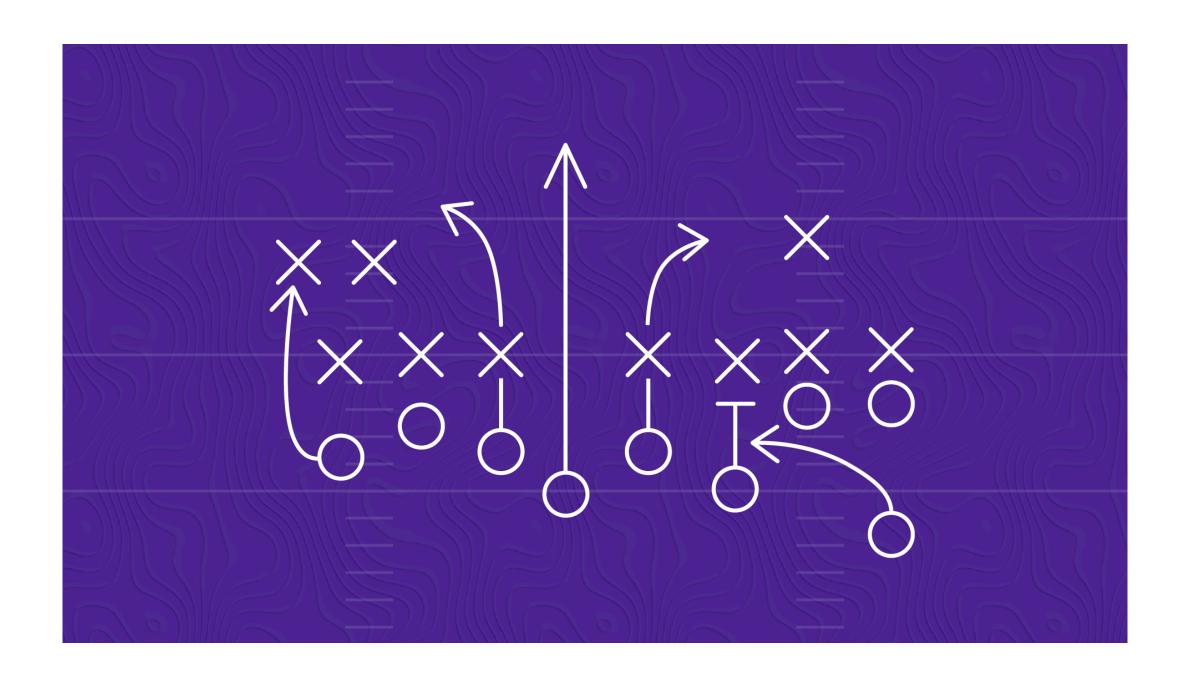
A little about me



- Born and grew-up in Trinidad and Tobago
- B.A honours Computer Science from Harvard College in 2018
- Won a Rhodes Scholarship to pursue PhD at Oxford
- Graduated in August with a PhD from the VGG group
- Research interests: multi-modal + self-supervised learning
- Currently, Machine Learning scientist at Piñata Farms.

The PhD Playbook

helpful to others.



The set of strategies that made me successful during my PhD and can be

The PhD Playbook

The playbook has been divided into the following sections:

- 1. "It takes a village": the importance of the people in your PhD journey
- 2. "The Paper Checklist": tips for a competitive submission
- 3. "What's next?": tips on what to do next after completing PhD

It Takes a Village The importance of the people in your PhD journey

What's the most important section of my thesis?

Acknowledgements

To my co-supervisors, Andrea Vedaldi and João Henriques, thank you for your constant support, patience and guidance throughout this DPhil. Thank you for always being very generous with your knowledge and time, and giving me the space to tackle research problems that I am excited and passionate about. This thesis would not be possible without you two.

To my amazing collaborators, Yuki Asano, Ruth Fong, and Pa-Yao Huang, you have made each and every one of my research projects enjoyable, and intellectually enriching. I have learnt so much from each of you, and I would not be the researcher I am today if it was not for the countless hours we spent ideating, coding and brainstorming. Collaborators like you make a DPhil worth it.

More broadly, to my VGG family, I am so thankful to you for welcoming me as part of the lab, and always being a constant source of support. Andrew Brown, Lili Momeni, Daffy Afouras, Max Bain, Tendga Han, Christian Rupprecent, and Dylan Campbell, I am gonna miss you all and cannot wait to see how you all impact this field in fundamental ways.

This DPhil would not be possible without the financial support of the Rhodes Trust. Winning the Rhodes Scholarship has been one of my biggest blessings, and being part of the Rhodes community has made my Oxford experience really special.

I also want to thank EPSRC AIMS CDT for funding my research, and in particular, Wendy Poole for taking care of every administrative task related to my DPhil, thus allowing me to focus on my research. Wendy, you are simply the best.

Thank you to Facebook for supporting my DPhil research. I would not have been able to push the limits of large-scale multi-modal self-supervision without access to the data, computing resources and amazing collaborators, Ishan Misra, Geoffrey Zweig, Florian Metze, Christoph Feichtenhofer, Polina Kuznetsova, Rose Kanjirathinkal and Dong Guo.

To my friends in Oxford and London, Stephanie Ifayemi, Madeleine Chang, Samuel Liu, Alexander Thomas, Shaan Desai, Terrens Muradzikwa, Jelani Munroe, and Michael Chen, thank you for always supporting and pushing me throughout this journey.

You do not know how much it means to me to have you all in my life, and I have cherished every moment with you all.

Lastly, and most importantly, thank you to my family (Raymond, Hyacinth, and Nku) for always believing in me. You have been there for me during the highs and lows of this DPhil, and I can always count on you all to pick me up when I am down. This DPhil is for you.

Acknowledgements

Supervisors + Postdocs

Collaborators

Mentors + Sponsors Friends



Supervisors

- Talk to past and current students
 - Supervisory style: hands-on vs hands-off? Long-term vs short-term?

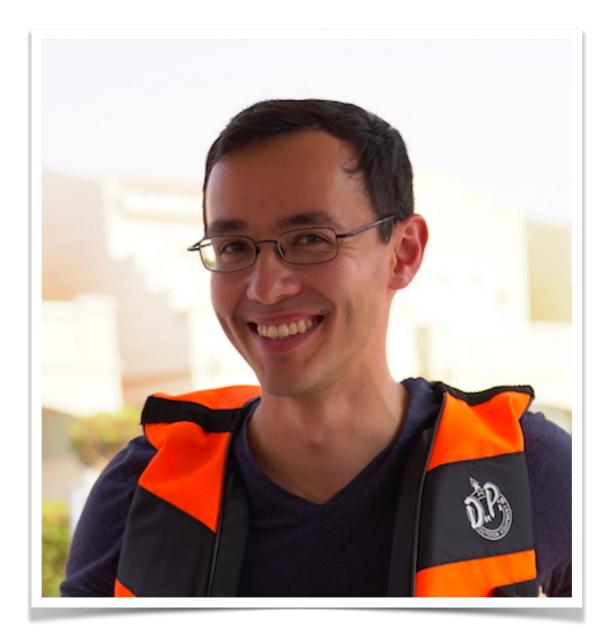
Andrea Vedaldi

• Research interests: does supervisor's interests overlap with your research passion?

João Henriques

Collaborators

- Collaborate, not compete: bounce ideas, pair program
- Share and rotate first-authorship
- Let everyone play to their strengths



Yuki Asano

Language Models are Few-Shot Learners

Tom B. Broy	wn*	Benjamin	Mann*	Nick F	kyder*	Mela
Jared Kaplan †	Prafulla	Dhariwal	Arvind Nee	elakantan	Pranav	Shyam
Amanda Askell	Sandhin	i Agarwal	Ariel Herbe	rt-Voss	Gretchen I	Krueger
Rewon Child	Aditya	Ramesh	Daniel M. Z	Ziegler	Jeffrey V	Vu
Christopher He	esse	Mark Chen	Eric S	igler	Mateusz I	Litwin
Benjar	nin Chess	1	Jack Clar	k	Chri	stopher
Sam McCan	dlish	Alec Ra	adford	Ilya Su	ıtskever	D

Ruth Fong

Bernie Huang

lanie Subbiah Girish Sastry Tom Henigha **Clemens Winter** Scott Gray Berner

Dario Amodei

Mentors

- You don't need to have to have all the answers
- "Your Personal Board of Directors": those who you go to for advice

Ishan Misra

• Deciding between internship opportunities, research directions, post-grad

Maxine Williams

- Sponsors: those in senior positions who advocate for you
- Try to establish such relationship during internships

Florian Metze

Geoffrey Zweig

Friends + Family

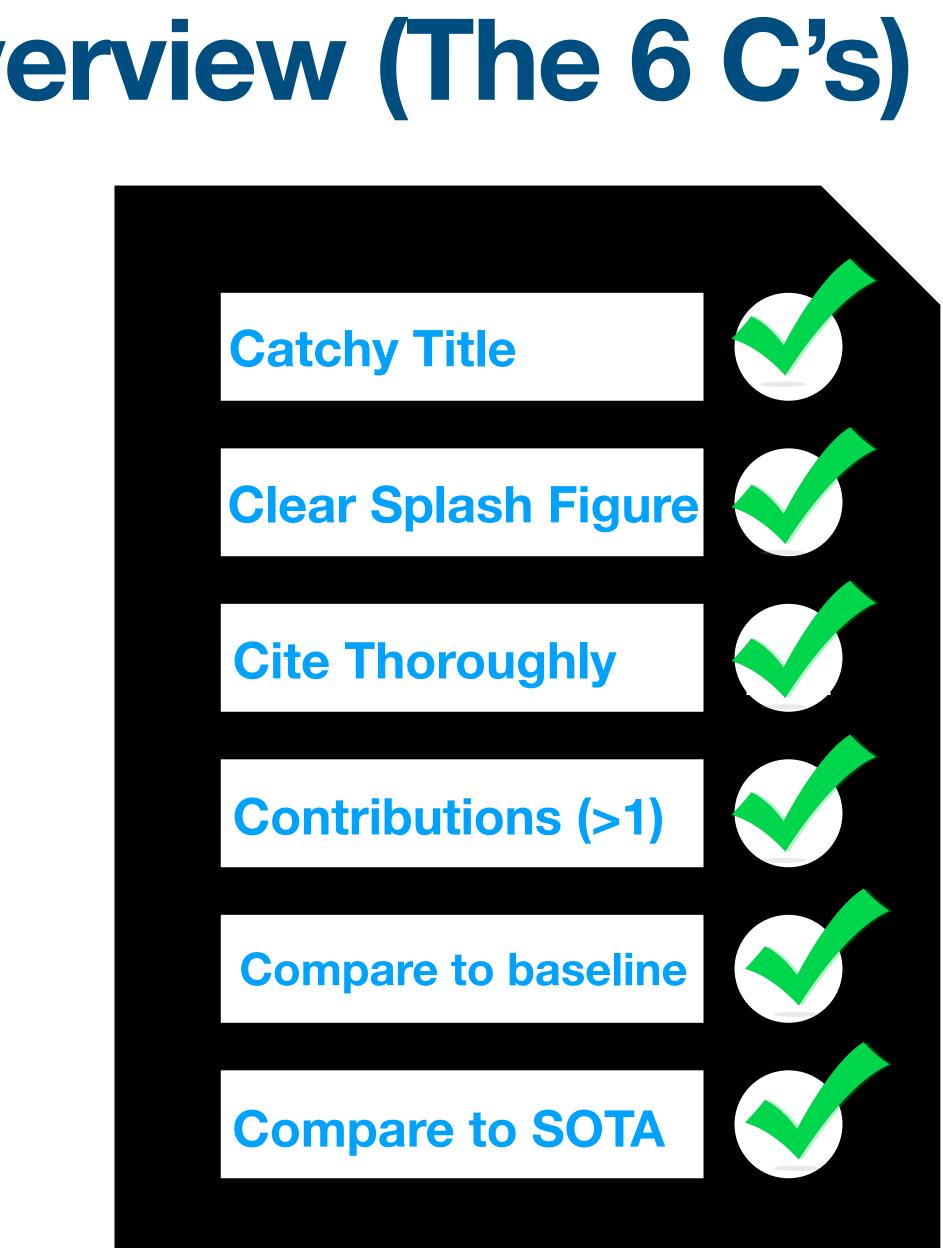
- PhD is long and difficult journey, and family and friends play critical role in getting you through Support you during the tough times, and celebrate the good times

Friends

Family

Paper checklist Tips for a competitive submission

Checklist Overview (The 6 C's)



Catchy Title

• Gives an idea about topic, but leaves the reader wanting to learn more

Labelling unlabelled videos from scratch with multi-modal self-supervision

Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers

Splash Figure

Captures the method and/or the intuition of the approach very clearly

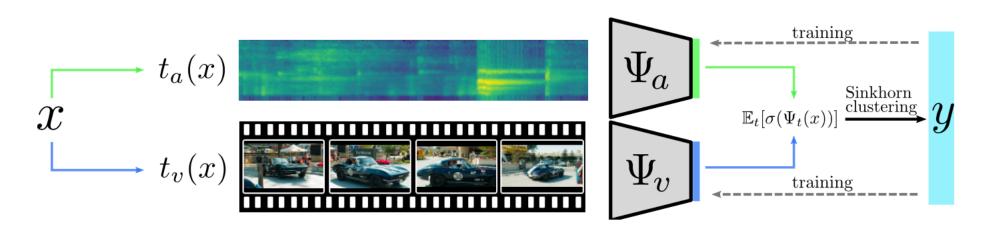
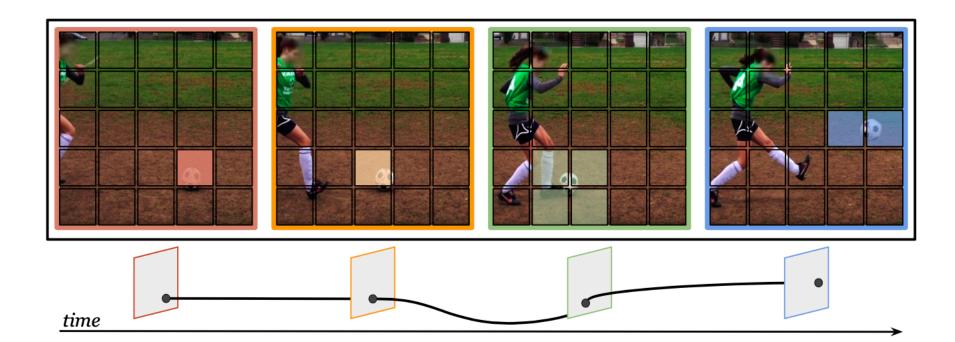
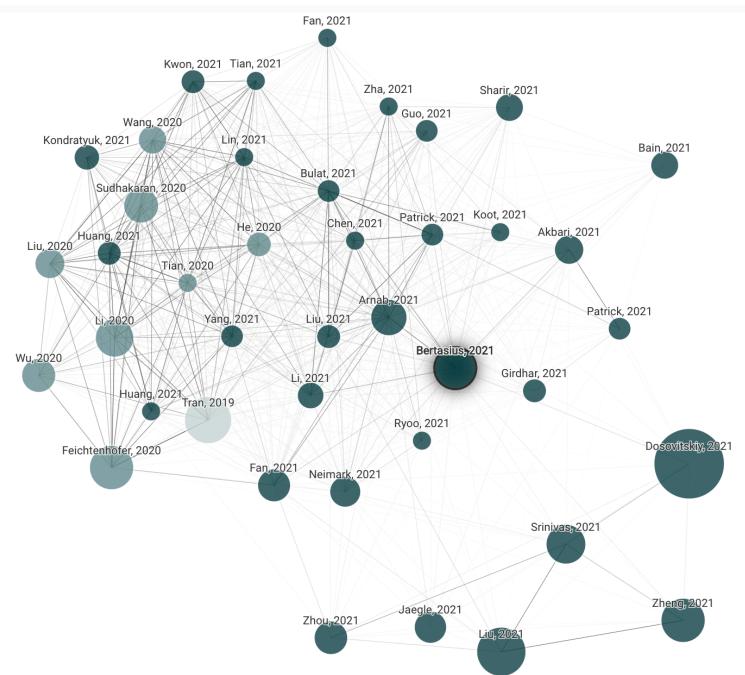


Figure 1: **Our model** views modalities as different *augmentations* and produces a multi-modal clustering of video datasets from scratch that can closely match human annotated labels.



Related Works

- Be very thorough; cite as much relevant works as possible.
 - "Are you going to get as much citations on this work?" supervisor
- Use websites such as <u>ConnectedPapers</u>, Semantic Scholar, PapersWithCode



Method

- Clear, and simple language and writing (very easy-to-follow)
- More than 1 technical novel contribution (3 is ideal)

3 Method

3.1 Non-degenerate clustering via optimal transport

- **3.2** Clustering with arbitrary prior distributions
 - 3.3 Multi-modal single labelling

ting (very easy-to-follow) oution (3 is ideal)

3 Trajectory Attention for Video Data

3.1 Video self-attention

3.2 Approximating attention

Results: Extensive Ablations

- appendix.
- Important: to define baseline.

Ablation of multi-modality, Table 3: Modality Alignment and Gaussian marginals. Decorrelated Heads. Models are evaluated at 75 epochs on the VGG-Sound dataset.

Method	•	(🔹 🖪)	MA?	G.?	DH?	Acc	ARI	NMI
(a) SeLa	1	X	_	_	_	6.4	2.3	20.6
(b) Concat	X	1	_	X	X	7.6	3.2	24.7
(c) SeLaVi	X	1	X	X	X	24.6	15.6	48.8
(d) SeLaVi	X	1	X	1	1	26.6	18.5	50.9
(e) SeLaVi	X	\checkmark	\checkmark	X	1	26.2	17.3	51.5
(f) SeLaVi	X	1	✓	✓	X	23.9	14.7	49.9
(g) SeLaVi	X	1	1	1	1	26.6	17.7	51.1

Extensive ablations demonstrates the impact of your contribution clearly

Anticipate any ablation requests from reviewers and add to main paper or

Table 4: Attention ablations: We compare trajectory attention with alternatives and ablate its design choices. We report GFLOPS and top-1 accuracy (%) on K-400 and SSv2. Att_T: temporal attention, Avg_T: temporal averaging, Norm_{ST}: space-time normalization, Norm_S: spatial normalization.

Attention	Att _T	Avg_T	Norm _S	Norm _{ST}	GFLOPS	K-400	SSv2
Joint Space-Time	_	_	_	-	180.6	79.2	64.0
Divided Space-Time	_	_	_	-	185.8	78.5	64.2
	×	\checkmark	✓	X	180.6	76.0	60.0
	\checkmark	X	X	\checkmark	369.5	77.2	60.9
Trajectory	✓	×	✓	×	369.5	79.7	66.5

Results: Comparison to State-of-Art

- Showing competitive performance compared to current state-of-the-art always helps your paper.
- Show comparisons across a number of datasets: 3 4 is ideal.
- approach excels in.

(a) VGG-Sound.											
Method	NMI	ARI	Acc.	$\langle \mathbf{H} \rangle$	$\langle \mathbf{p}_{\mathrm{max}} angle$						
Random	10.2	4.0	2.2	4.9	3.5						
Supervised	46.5	15.6	24.3	2.9	30.8						
DPC	15.4	0.7	3.2	4.7	4.9						
XDC	18.1	1.2	4.5	4.41	7.4						
MIL-NCE	48.5	12.5	22.0	2.6	32.9						
SeLaVi	55.9	21.6	31.0	2.5	36.3						
	(c)) Kine	etics.								
Method NMI ARI Acc. $\langle H \rangle \langle p_{max} \rangle$											
111001100		ANI	Acc.	$\langle \mathbf{H} \rangle$	$\langle {f p}_{ m max} angle$						
Random	11.1	0.2	Acc.	$\langle \mathbf{H} \rangle$ 5.1	$\frac{\langle \mathbf{p}_{\max} \rangle}{3.3}$						
				()							
Random	11.1	0.2	1.8	5.1	3.3						
Random Supervised	11.1 70.5	0.2 43.4	1.8 54.9	5.1 1.6	3.3 62.2						
Random Supervised DPC	11.1 70.5 16.1	0.2 43.4 0.6	1.8 54.9 2.7	5.1 1.6 4.9	3.3 62.2 3.9						

	(b) AVE.											
Method	NMI	ARI	Acc.	$\langle \mathbf{H} \rangle$	$\langle \mathbf{p}_{\mathrm{max}} angle$							
Random	9.2	1.3	9.3	2.9	12.6							
Supervised	58.4	34.8	50.5	1.1	60.6							
DPC	18.4	5.0	15.1	2.7	17.5							
XDC	17.1	6.0	16.4	2.6	19.1							
MIL-NCE	56.3	30.3	42.6	1.2	57.1							
SeLaVi	66.2	47.4	57.9	1.1	59.3							
	(d) K i	inetics	-Soun	d.								
Method	NMI	ARI	Acc.	$\langle \mathbf{H} \rangle$	$\langle \mathbf{p}_{\mathrm{max}} angle$							
Random	2.8	0.5	5.9	3.3	8.3							
Supervised	81.7	66.3	75.0	0.5	85.4							
DPC	8.8	2.2	9.6	3.1	13.6							
XDC	7.5	1.9	9.4	3.1	13.6							
MIL-NCE	47.5	24.0	37.8	1.5	51.0							
SeLaVi	47.5	28.7	41.2	1.8	45.5							

Structure table to show other dimensions (FLOPs, memory, speed) that your

(a) Something–Something V2

(b) **Kinetics-400**

Model	Pretrain	Top-1	Top-5	GFLOPs × views	Method	Pretrain	Top-1	Top-5	GFLOPs×views
SlowFast [25]	K-400	61.7	-	65.7×3×1	I3D [10]	IN-1K	72.1	89.3	108×N/A
TSM [46]	K-400	63.4	88.5	62.4×3×2	R(2+1)D [75]	-	72.0	90.0	$152 \times 5 \times 23$
STM [33]	IN-1K	64.2	89.8	$66.5 \times 3 \times 10$	S3D-G [84]	IN-1K	74.7	93.4	142.8×N/A
MSNet [40]	IN-1K	64.7	89.4	67×1×1	X3D-XL [24]	-	79.1	93.9	$48.4 \times 3 \times 10$
TEA [45]	IN-1K	65.1	-	$70 \times 3 \times 10$	SlowFast [25]	-	79.8	93.9	$234 \times 3 \times 10$
bLVNet [23]	IN-1K	65.2	90.3	$128.6 \times 3 \times 10$	VTN [51]	IN-21K	78.6	93.7	4218×1×1
VidTr-L [44]	IN-21K+K-400	60.2	-	$351 \times 3 \times 10$	VidTr-L [44]	IN-21K	79.1	93.9	$392 \times 3 \times 10$
Tformer-L [7]	IN-21K	62.5	-	$1703 \times 3 \times 1$	Tformer-L[7]	IN-21K	80.7	94.7	$2380 \times 3 \times 1$
ViViT-L [2]	IN-21K+K-400	65.4	89.8	3992×4×3	MViT-B [22]	-	81.2	95.1	$455 \times 3 \times 3$
MViT-B [22]	K-400	67.1	90.8	$170 \times 3 \times 1$	ViViT-L [2]	IN-21K	81.3	94.7	$3992 \times 3 \times 4$
Mformer	IN-21K+K-400	66.5	90.1	369.5×3×1	Mformer	IN-21K	79.7	94.2	369.5×3×10
Mformer-L	IN-21K+K-400	68.1	91.2	$1185.1 \times 3 \times 1$	Mformer-L	IN-21K	80.2	94.8	$1185.1 \times 3 \times 10$
Mformer-HR	IN-21K+K-400	67.1	90.6	958.8×3×1	Mformer-HR	IN-21K	81.1	95.2	$958.8 \times 3 \times 10$

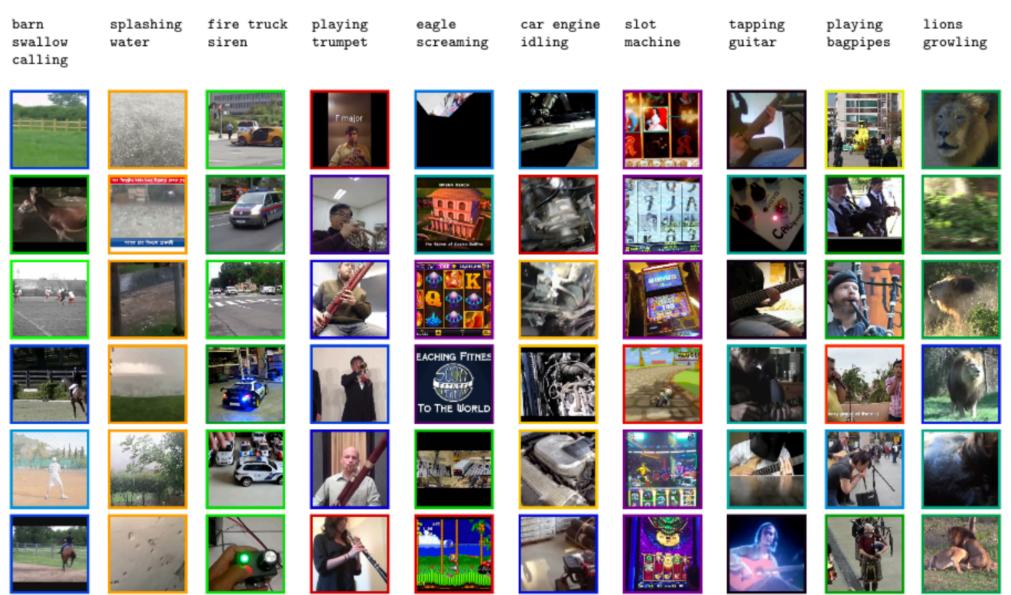
(c) Epic-Kitchens

(d) Kinetics-600

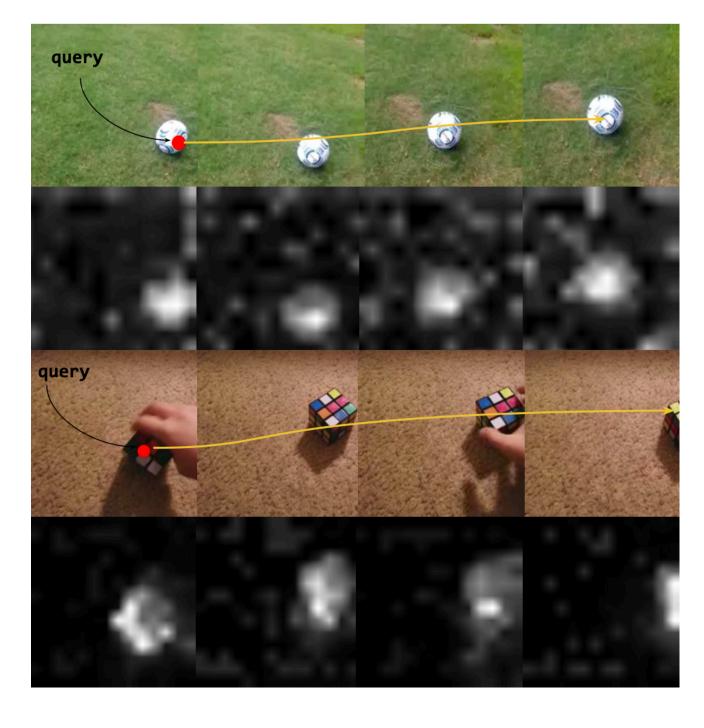
Method	Pretrain	Α	V	Ν	Model	Pretrain	Top-1	Top-5	GFLOPs × views
TSN [78]	IN-1K	33.2	60.2	46.0	AttnNAS [81]	-	79.8	94.4	-
TRN [86]	IN-1K	35.3	65.9	45.4	LGD-3D [56]	IN-1K	81.5	95.6	-
TBN [36]	IN-1K	36.7	66.0	47.2	SlowFast [25]	-	81.8	95.1	$234 \times 3 \times 10$
TSM [46]	IN-1K	38.3	67.9	49.0	X3D-XL [24]	-	81.9	95.5	$48.4 \times 3 \times 10$
SlowFast [25]	K-400	38.5	65.6	50.0	Tformer-HR [7]	IN-21K	82.4	96.0	1703×3×1
ViViT-L [2]	IN-21K+K-400	44.0	66.4	56.8	ViViT-L [2]	IN-21K	83.0	95.7	3992×3×4
Mformer	IN-21K+K-400	43.1	66.7	56.5	MViT-B-24 [22]	-	83.8	96.3	236×1×5
Mformer-L	IN-21K+K-400	44.1	67.1	57.6	Mformer	IN-21K	81.6	95.6	369.5×3×10
Mformer-HR	IN-21K+K-400	44.5	67.0	58.5	Mformer-L	IN-21K	82.2	96.0	1185.1×3×10
					Mformer-HR	IN-21K	82.7	96.1	958.8×3×10

Results: Qualitative Figures

what your model is doing.



Qualitative Figures complements your quantitative results by visually showing



Practical Tip 1: Choose venue wisely

- Every conference is different, and they each value different things
 - Theory vs applied? e.g. ICML vs. WACV
 - Preference for pushing state-of-the-art e.g. CVPR
 - Domain-specific vs domain-agnostic e.g. NeurIPS vs ICASSP

Practical Tip 2: Maintain experiment log

- Be very meticulous on maintaining experiment log \bullet
 - Very helpful rebuttals to find any requested experiments
 - Detect patterns in hyper-parameters for SOTA. lacksquare
 - Reproducibility
- Spreadsheets or open-source tools (Mlflow, Neptune) are helpful for this.

	SLURM ID	EXP DESC	ACC	MODEL	INIT	PATCH (P x P x T)	INPUT-SIZE	FRAMES	BATCH-SIZE	Attention Layer
K-400										
python3 run_with_submitit.pynum_shards 8 partition prioritycomment iccv-2021cfg configs/ICCV21/K_400/jointspacetimeformer_rgb_ 8x8.yamluse_volta32job_dir /checkpoint/mandelapatrick/slowfast_k400_abl	40426115		78.90%	ViT-B (L=12, NH=12, d=3072)	IM-21K, ViT-B, 224x224	16 x 16 x 2	224 x 224	16 x 4	32 / NODE	Joint Space-Time
python3 run_with_submitit.pynum_shards 8 partition prioritycomment iccv-2021cfg configs/SOTA/K400/jointspacetimeformer_rgb_224 _16x4_3D.yamluse_volta32job_dir /checkpoint/mandelapatrick/neurips_sota	40492435		79.67%	ViT-B (L=12, NH=12, d=3072)	IM-21K, ViT-B, 224x224	16 x 16 x 2	224 x 224	16 x 4	32 / NODE	Joint Space-Time
python3 run_with_submitit.pynum_shards 8 partition prioritycomment iccv-2021cfg configs/SOTA/K400/timesformer_rgb_224_16x4_3 D.yamluse_volta32job_dir /checkpoint/mandelapatrick/neurips_sota	40437031		79.01%	ViT-B (L=12, NH=12, d=3072)	IM-21K, ViT-B, 224x224	16 x 16 x 2	224 x 224	16 x 4	32 / NODE	Divided Space-Time
python3 run_with_submitit.pynum_shards 8 partition prioritycomment iccv-2021cfg configs/SOTA/K400/spacetimeattendformer_rgb_2 24_16x4_3D.yamluse_volta32job_dir /checkpoint/mandelapatrick/neurips_sota	40437950	RRC, no CJ, no RA	79.79%	ViT-B (L=12, NH=12, d=3072)	IM-21K, ViT-B, 224x224	16 x 16 x 2	224 x 224	16 x 4	32 / NODE	Space-Time Motion

Practical Tip 3: Open-Source Early

- Open-sourcing code with pertained models soon after conference deadline:
 - Adds visibility / publicity to your work as others can easily build on it
 - Reproducibility of results by the community.

What's next? Tips on deciding on what's next after wrapping up PhD

What's next post-PhD? A professor, research scientist, and ML engineer walk into a bar

The Post-PhD Job Matrix (At Graduation)

	Prestige	Financial	Academic Freedom	Bureaucracy	Stability
Industry Lab (FB, Google, DM)	Medium	High	Medium	High	High
Academic (Tenure Track)	High	Low	High	High	High
Startup (Seed / Series-A)	Low	Medium	Low	Low	Low

Your preferences impacts the function

- These weights may be positive or negative :)

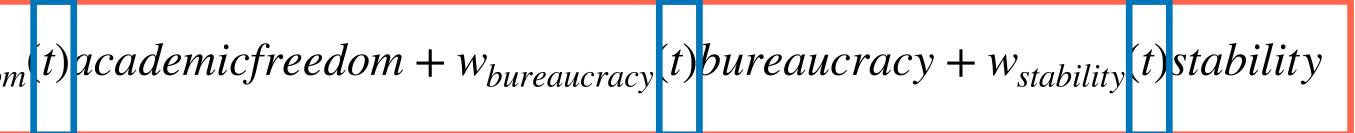
The weights of this function depends on your preferences and circumstances.

 $f = w_{prestige} prestige + w_{financial} financial + w_{people} people + w_{academicfreedom} academicfreedom + w_{bureaucracy} bureaucracy + w_{stability} stability$

Your preferences vary with time

- As you get older, what you value changes.
 - e.g. One may value stability later on life, but not when younger

$$f(t) = w_{prestige}(t) prestige + w_{financial}(t) financial + w_{academicfreedo}(t)$$

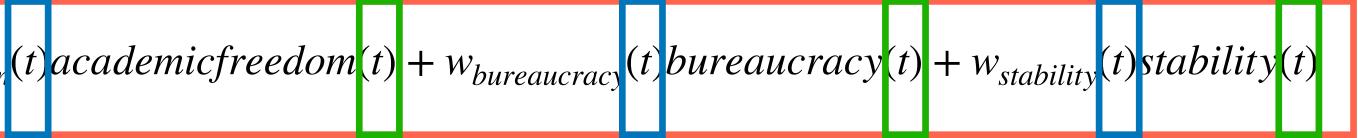


The variables vary with time

The variables of the function usually change value over time.

• e.g. salary, stability

$$f(t) = w_{prestige}(t) prestige(t) + w_{financial}(t) financial(t) + w_{academicfreedom}(t) +$$



For industrial + academic path, the change of variables is known

How variables change are a lot more predictable for academic and industrial jobs.

- Salaries:
 - University professor: publicly available online
 - Industrial jobs: websites are available e.g. Glassdoor, Levels.fyi

For startups, there's a lot more unknowns

uncertainty when deciding on a startup?

 As there is greater information asymmetry and uncertainty with startups, the value of these variables can vary a lot and is very startup-dependent.

• What are the questions to answer to get the right information to reduce this

Joining a startup

- Does the mission excite you?
- Stage of startup?
- Do you like the people?
- What are your financial goals?
- Are you okay with doing more applied work?
- Who are the investors?
- What's your risk appetite?

What's your role at the startup and how do you see it changing over time?

In summary

Build the right village to make you successful during PhD \bullet

Follow the checklist (6 C's) to have a competitive paper submission

• Only you can decide what you want to do after your PhD :)