Keeping Your Eye on the Ball: Trajectory Attention for Video Transformers

Mandela Patrick1, Dylan Campbell2, Yuki M. Asano2
Ishan Misra1, Florian Metze1, Christoph Feichtenhofer1
Andrea Vedaldi1, João F. Henriques2

1Facebook AI
2Visual Geometry Group, Oxford
 Equal contribution
Recognising actions in video

- **Proxy** for other video recognition tasks (≈ classification for images)
- Often requires **fine-grained** distinctions between subtle motions
- Often requires **long-range** associations
- E.g.: swing dancing vs. salsa dancing; dribbling basketball vs. dunking basketball; catching ball vs. throwing ball; ...
Recognising actions in video
Recognising actions in video

- Camera motion
- Object motion
Background

Convolutional networks

Convolutions limit the receptive field, both spatially and temporally

- Alleviated with *atrous* convolution
- Receptive field varies with resolution and framerate; can be difficult to tune

Transformer networks

- Long-range associations / receptive field covers the **full input** at all stages
- Very little inductive bias compared to CNNs ⇒ often harder to train, but more flexible
- Computation grows quadratically with input ($\mathcal{O}(S^2T^2)$ for input with T frames and S pixels)
Inductive biases in video processing

Physical motivation:

• Camera motion does not affect scene properties
• Motion path and appearance of an object can be disentangled
 • Translation equivariance is a subset of this desired behaviour

Advantages:

• Data efficiency
• Extrapolation beyond training set (generalization)
• Sometimes:
 • Improves computational efficiency
 • Reduces # of parameters and overfitting
Video attention strategies: joint space-time
Video attention strategies: joint space-time
Video attention strategies: joint space-time

Softmax normalization across volume
Video attention strategies: joint space-time
Video attention strategies: joint space-time

- Computational complexity: $\mathcal{O}(S^2T^2)$
- Infeasible for long and high-res videos
- Can we get closer to $\mathcal{O}(ST)$?

Bertasius et al., Is space-time attention all you need for video understanding? In ICML, 2021.
Arnab et al., Vivit: A video vision transformer, 2021.
Video attention strategies: divided space-time
Video attention strategies: divided space-time
Video attention strategies: divided space-time

Softmax normalization
Video attention strategies: divided space-time

- Significant computation/memory gains: spatial att $O(S^2T)$, temporal att $O(ST^2)$
- Still has a quadratic bottleneck in each dimension
- Axis-aligned pooling is artificial

Moving camera + moving objects

Bertasius et al., Is space-time attention all you need for video understanding? In ICML, 2021.
Arnab et al., ViViT: A video vision transformer, 2021.
Aim: find other patches that contain the ball and aggregate their information into a single output

Why?
- To leverage **multiple views** of the same object to better understand its properties
- To reason about the **motion** of the object

How?
- **Attention**: computes feature similarities across space-time and pools information
Trajectory attention
Trajectory attention

Softmax normalization
per frame
Trajectory attention
Trajectory attention
Trajectory attention
Trajectory attention

- Overall complexity: $\mathcal{O}(S^2T^2)$
 - No better than before
 - Needs to be improved by other means
Idea: Take inspiration from matrix factorization methods / low-rank decomposition

- Not just multiplication, in general: $A \approx f(\cdot, \cdot)$
- Due to the softmax, attention matrices usually have high rank
 \Rightarrow Poorly approximated by PCA/low-rank decompositions
- Prototypes must be few, and representative of all keys/queries

Cost of multiplying this matrix by an arbitrary vector: $\Theta(S^2T^2) \rightarrow \Theta(STP)$

Formulate attention probabilistically

- Attention operator defines a **parametric model** of the probability of event A_{ij} (assignment of key j to query i), with a multinomial logistic function:

 \[P(A_{ij}) = S(q_i^T K) \]

 - Softmax
 - Query vector
 - Key vectors (concatenated)

- Introduce **latent variables** U_{jl} (assignment of key j to prototype l)

- Then (without approximation):

 \[P(A_{ij}) = \sum_{\ell} P(A_{ij} | U_{\ell j}) P(U_{\ell j}) \]

- But, $P(A | U)$ is intractable \Rightarrow approximate with a similar parametric model

- All together:

 \[\tilde{P}(A)V = S(Q^T P) (S(P^T K)V) \]

Computational efficiency

- $\mathcal{O}(S^2 T^2) \rightarrow \mathcal{O}(STP)$
Selecting prototypes

Priorities:

• **Dynamically** adjust to keys/queries to ensure their region is reconstructed well
• Minimize **redundancy** between prototypes

Some suboptimal choices:

• Trainable vectors *(not adaptive)*
• Random sampling from keys/queries *(often selects collinear vectors)*
• Clustering keys/queries online *(expensive)*
Objective:
Select the **most orthogonal** subset of keys/queries

A greedy algorithm:

\[X \leftarrow \text{random subset of } K \cup Q \]

For \(l \in \{1, \ldots, |P|\} \):

\[i^* \leftarrow \arg\min_i \sum_{j=1}^{l-1} \left| \langle X_i, P_j \rangle \right| \]

\[P_l \leftarrow X_{i^*} \]
Experiments: approximating attention

Comparison to state-of-the-art on the Long Range Arena benchmark

<table>
<thead>
<tr>
<th>Model</th>
<th>ListOps</th>
<th>Text</th>
<th>Retrieval</th>
<th>Image</th>
<th>Pathfinder</th>
<th>Avg↑</th>
<th>GFLOPS↓</th>
<th>Mem.↓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact [76]</td>
<td>36.69</td>
<td>63.09</td>
<td>78.22</td>
<td>31.47</td>
<td>66.35</td>
<td>55.16</td>
<td>1.21</td>
<td>4579</td>
</tr>
<tr>
<td>Performer-256 [14]</td>
<td>36.69</td>
<td>63.22</td>
<td>78.98</td>
<td>29.39</td>
<td>66.55</td>
<td>54.97</td>
<td>0.49</td>
<td>885</td>
</tr>
<tr>
<td>Nyströmformer-128 [85]</td>
<td>36.90</td>
<td>64.17</td>
<td>78.67</td>
<td>36.16</td>
<td>52.32</td>
<td>53.64</td>
<td>0.62</td>
<td>745</td>
</tr>
<tr>
<td>Orthoformer-64</td>
<td>33.87</td>
<td>64.42</td>
<td>78.36</td>
<td>33.26</td>
<td>66.41</td>
<td>55.26</td>
<td>0.24</td>
<td>344</td>
</tr>
</tbody>
</table>

- Best overall results with far fewer prototypes (64) than other methods
- About **half** the memory and GFLOPS of the best approximations
- **No loss** of performance on average (unlike the other approximations)
Experiments: approximating attention

Comparison on action recognition datasets (Kinetics-400, Something-Something)

(a) Orthoformer is competitive with Nyström.

<table>
<thead>
<tr>
<th>Attention</th>
<th>Approx.</th>
<th>Mem.</th>
<th>K-400</th>
<th>SSv2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trajectory (E)</td>
<td>N/A</td>
<td>7.4</td>
<td>79.7</td>
<td>66.5</td>
</tr>
<tr>
<td>Trajectory (A)</td>
<td>Performer</td>
<td>5.1</td>
<td>72.9</td>
<td>52.7</td>
</tr>
<tr>
<td>Nyströmformer</td>
<td>3.8</td>
<td>77.5</td>
<td>64.0</td>
<td></td>
</tr>
<tr>
<td>Orthoformer</td>
<td>3.6</td>
<td>77.5</td>
<td>63.8</td>
<td></td>
</tr>
</tbody>
</table>

(b) Selecting orthogonal prototypes is the best strategy.

<table>
<thead>
<tr>
<th>Attention</th>
<th>Selection</th>
<th>Mem.</th>
<th>K-400</th>
<th>SSv2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trajectory (E)</td>
<td>N/A</td>
<td>7.4</td>
<td>79.7</td>
<td>66.5</td>
</tr>
<tr>
<td>Trajectory (A)</td>
<td>Seg-Means</td>
<td>3.6</td>
<td>75.8</td>
<td>60.3</td>
</tr>
<tr>
<td>Random</td>
<td>Orthogonal</td>
<td>3.6</td>
<td>77.5</td>
<td>63.8</td>
</tr>
</tbody>
</table>
Experiments: setup

Application: action recognition

- Use ViT [1] as the base model (12 layers / 12 attention heads / embeddings size 768)
- Separate space and time positional encodings (TimeSformer [2])
- Cubic image tokenization (ViViT [3])
- Adding our Trajectory Attention

Datasets:
- Kinetics-400/600 (*appearance cues are more dominant*)
- Something-Something V2 (*motion cues are more dominant*)
- Epic Kitchens 100

Keeps objects consistent across different action classes

Experiments: setup

Train model on **single frames only** and assess drop in performance

![Bar chart showing performance drop]

- **39% performance drop**
Comparison of attention mechanisms

<table>
<thead>
<tr>
<th>Attention</th>
<th>K-400</th>
<th>SSv2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint Space-Time</td>
<td>79.2</td>
<td>64.0</td>
</tr>
<tr>
<td>Divided Space-Time</td>
<td>78.5</td>
<td>64.2</td>
</tr>
<tr>
<td>Trajectory</td>
<td>79.7</td>
<td>66.5</td>
</tr>
</tbody>
</table>
Experiments: benchmark results

(a) Something–Something V2

<table>
<thead>
<tr>
<th>Model</th>
<th>Pretrain</th>
<th>Top-1</th>
<th>Top-5</th>
<th>GFLOPs × views</th>
</tr>
</thead>
<tbody>
<tr>
<td>SlowFast</td>
<td>K-400</td>
<td>61.7</td>
<td>-</td>
<td>65.7×3×1</td>
</tr>
<tr>
<td>TSM</td>
<td>K-400</td>
<td>63.4</td>
<td>88.5</td>
<td>62.4×3×2</td>
</tr>
<tr>
<td>STM</td>
<td>IN-1K</td>
<td>64.2</td>
<td>89.8</td>
<td>66.5×3×10</td>
</tr>
<tr>
<td>MSNet</td>
<td>IN-1K</td>
<td>64.7</td>
<td>89.4</td>
<td>67×1×1</td>
</tr>
<tr>
<td>TEA</td>
<td>IN-1K</td>
<td>65.1</td>
<td>-</td>
<td>70×3×10</td>
</tr>
<tr>
<td>bLVNet</td>
<td>IN-1K</td>
<td>65.2</td>
<td>90.3</td>
<td>128.6×3×10</td>
</tr>
<tr>
<td>VidTr-L</td>
<td>IN-21K+K-400</td>
<td>60.2</td>
<td>-</td>
<td>351×3×10</td>
</tr>
<tr>
<td>Tformer-L</td>
<td>IN-21K</td>
<td>62.5</td>
<td>-</td>
<td>1703×3×1</td>
</tr>
<tr>
<td>ViViT-L</td>
<td>IN-21K+K-400</td>
<td>65.4</td>
<td>89.8</td>
<td>3992×4×3</td>
</tr>
<tr>
<td>MViT-B</td>
<td>K-400</td>
<td>67.1</td>
<td>90.8</td>
<td>170×3×1</td>
</tr>
<tr>
<td>Mformer</td>
<td>IN-21K+K-400</td>
<td>66.5</td>
<td>90.1</td>
<td>369.5×3×1</td>
</tr>
<tr>
<td>Mformer-L</td>
<td>IN-21K+K-400</td>
<td>68.1</td>
<td>91.2</td>
<td>1185.1×3×1</td>
</tr>
<tr>
<td>Mformer-HR</td>
<td>IN-21K+K-400</td>
<td>67.1</td>
<td>90.6</td>
<td>958.8×3×1</td>
</tr>
</tbody>
</table>

(b) Kinetics-400

<table>
<thead>
<tr>
<th>Method</th>
<th>Pretrain</th>
<th>Top-1</th>
<th>Top-5</th>
<th>GFLOPs × views</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D [10]</td>
<td>IN-1K</td>
<td>72.1</td>
<td>89.3</td>
<td>108×N/A</td>
</tr>
<tr>
<td>R(2+1)D [75]</td>
<td>-</td>
<td>72.0</td>
<td>90.0</td>
<td>152×5×23</td>
</tr>
<tr>
<td>S3D-G [84]</td>
<td>IN-1K</td>
<td>74.7</td>
<td>93.4</td>
<td>142.8×N/A</td>
</tr>
<tr>
<td>X3D-XL [24]</td>
<td>-</td>
<td>79.1</td>
<td>93.9</td>
<td>48.4×3×10</td>
</tr>
<tr>
<td>SlowFast</td>
<td>-</td>
<td>79.8</td>
<td>93.9</td>
<td>234×3×10</td>
</tr>
<tr>
<td>VTN [51]</td>
<td>IN-21K</td>
<td>78.6</td>
<td>93.7</td>
<td>4218×1×1</td>
</tr>
<tr>
<td>VidTr-L</td>
<td>IN-21K</td>
<td>79.1</td>
<td>93.9</td>
<td>392×3×10</td>
</tr>
<tr>
<td>Tformer-L</td>
<td>IN-21K</td>
<td>80.7</td>
<td>94.7</td>
<td>2380×3×1</td>
</tr>
<tr>
<td>MViT-B</td>
<td>-</td>
<td>81.2</td>
<td>95.1</td>
<td>455×3×3</td>
</tr>
<tr>
<td>ViViT-L</td>
<td>IN-21K</td>
<td>81.3</td>
<td>94.7</td>
<td>3992×3×4</td>
</tr>
<tr>
<td>Mformer</td>
<td>IN-21K</td>
<td>79.7</td>
<td>94.2</td>
<td>369.5×3×10</td>
</tr>
<tr>
<td>Mformer-L</td>
<td>IN-21K</td>
<td>80.2</td>
<td>94.8</td>
<td>1185.1×3×10</td>
</tr>
<tr>
<td>Mformer-HR</td>
<td>IN-21K</td>
<td>81.1</td>
<td>95.2</td>
<td>958.8×3×10</td>
</tr>
</tbody>
</table>

- **SOTA** on SSv2 (+1%), which is more reliant on motion cues
- Competitive with the much larger ViViT-L model on K400
Experiments: benchmark results

<table>
<thead>
<tr>
<th>Method</th>
<th>Pretrain</th>
<th>A</th>
<th>V</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSN [78]</td>
<td>IN-1K</td>
<td>33.2</td>
<td>60.2</td>
<td>46.0</td>
</tr>
<tr>
<td>TRN [86]</td>
<td>IN-1K</td>
<td>35.3</td>
<td>65.9</td>
<td>45.4</td>
</tr>
<tr>
<td>TBN [36]</td>
<td>IN-1K</td>
<td>36.7</td>
<td>66.0</td>
<td>47.2</td>
</tr>
<tr>
<td>TSM [46]</td>
<td>IN-1K</td>
<td>38.3</td>
<td>67.9</td>
<td>49.0</td>
</tr>
<tr>
<td>SlowFast</td>
<td>K-400</td>
<td>38.5</td>
<td>65.6</td>
<td>50.0</td>
</tr>
<tr>
<td>ViViT-L</td>
<td>IN-21K+K-400</td>
<td>44.0</td>
<td>66.4</td>
<td>56.8</td>
</tr>
<tr>
<td>Mformer</td>
<td>IN-21K+K-400</td>
<td>43.1</td>
<td>66.7</td>
<td>56.5</td>
</tr>
<tr>
<td>Mformer-L</td>
<td>IN-21K+K-400</td>
<td>44.1</td>
<td>67.1</td>
<td>57.6</td>
</tr>
<tr>
<td>Mformer-HR</td>
<td>IN-21K+K-400</td>
<td>44.5</td>
<td>67.0</td>
<td>58.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Pretrain</th>
<th>Top-1</th>
<th>Top-5</th>
<th>GFLOPs x views</th>
</tr>
</thead>
<tbody>
<tr>
<td>AttnNAS [81]</td>
<td>-</td>
<td>79.8</td>
<td>94.4</td>
<td>-</td>
</tr>
<tr>
<td>LGD-3D [56]</td>
<td>IN-1K</td>
<td>81.5</td>
<td>95.6</td>
<td>-</td>
</tr>
<tr>
<td>SlowFast [25]</td>
<td>-</td>
<td>81.8</td>
<td>95.1</td>
<td>234x3x10</td>
</tr>
<tr>
<td>X3D-XL [25]</td>
<td>-</td>
<td>81.9</td>
<td>95.5</td>
<td>48.4x3x10</td>
</tr>
<tr>
<td>Tformer-HR [7]</td>
<td>IN-21K</td>
<td>82.4</td>
<td>96.0</td>
<td>1703x3x1</td>
</tr>
<tr>
<td>ViViT-L [2]</td>
<td>IN-21K</td>
<td>83.0</td>
<td>95.7</td>
<td>3992x3x4</td>
</tr>
<tr>
<td>MViT-B-24 [22]</td>
<td>-</td>
<td>83.8</td>
<td>96.3</td>
<td>236x1x5</td>
</tr>
<tr>
<td>Mformer</td>
<td>IN-21K</td>
<td>81.6</td>
<td>95.6</td>
<td>369.5x3x10</td>
</tr>
<tr>
<td>Mformer-L</td>
<td>IN-21K</td>
<td>82.2</td>
<td>96.0</td>
<td>1185.1x3x10</td>
</tr>
<tr>
<td>Mformer-HR</td>
<td>IN-21K</td>
<td>82.7</td>
<td>96.1</td>
<td>958.8x3x10</td>
</tr>
</tbody>
</table>

- **SOTA** on Epic-Kitchens Nouns (+2.3%), which is more reliant on motion cues
- Competitive performance on K600
Experiments: attention maps

![Attention Maps Example]
Conclusions

✓ Aggregating information along implicit motion trajectories can inject a helpful inductive bias into video transformers

✓ Quadratic dependency on input size can be reduced to linear

✓ Orthogonality is the most effective prototype selection criteria

✓ SOTA results on motion-focused datasets
Thank you

Mandela Patrick

Dylan Campbell

Yuki M. Asano

Ishan Misra

Florian Metze

Christoph Feichtenhofer

Andrea Vedaldi

João F. Henriques

University of Oxford / Facebook AI Research

Equal Contribution