

Keeping Your Eye on the Ball: Trajectory Attention for Video Transformers

Mandela Patrick⁻¹, Dylan Campbell⁻², Yuki M. Asano⁻² Ishan Misra¹, Florian Metze¹, Christoph Feichtenhofer¹ Andrea Vedaldi¹, João F. Henriques²

¹Facebook Al ²Visual Geometry Group, Oxford [•]Equal contribution

Recognising actions in video

- Proxy for other video recognition tasks (≈ classification for images)
- Often requires **fine-grained** distinctions between subtle motions
- Often requires long-range associations
- E.g.: swing dancing vs. salsa dancing; dribbling basketball vs. dunking basketball; catching ball vs. throwing ball;

...

Recognising actions in video

Recognising actions in video

- Camera motion
- Object motion

Background

Convolutional networks

Convolutions limit the receptive field, both spatially and temporally

- Alleviated with atrous convolution
- Receptive field varies with resolution and framerate; can be difficult to tune

Tran et al., Learning spatiotemporal features with 3D convolutional networks. In ICCV, 2015. Carreira & Zisserman, Quo vadis, action recognition? A new model and the Kinetics dataset. In CVPR, 2017. Tranet et al., A closer look at spatiotemporal convolutions for action recognition. In CVPR, 2018. Wang et et al., Non-local neural networks. In CVPR, 2018.

Background

Transformer networks

- Long-range associations / receptive field covers the **full input** at all stages
- Very little inductive bias compared to CNNs
 ⇒ often harder to train, but more flexible
- Computation grows quadratically with input $(\mathcal{O}(S^2T^2))$ for input with T frames and S pixels)

Patrick et al., Support-set bottlenecks for video-text representation learning. In ICLR, 2021.

Dosovitskiy et al., An image is worth 16x16 words: Transformers for image recognition at scale. In ICLR, 2021.

Touvron et al., Training data-efficient image transformers & distillation through attention. In ICML, 2021. Doersch et al., Crosstransformers: spatially-aware few-shot transfer. In NeurIPS, 2020.

Torresani et al., Is space-time attention all you need for video understanding? In ICML, 2021. Patrick et al. 2021, Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers

Inductive biases in video processing

Physical motivation:

- Camera motion does not affect scene properties
- Motion path and appearance of an object can be disentangled
 - Translation equivariance is a subset of this desired behaviour

Advantages:

- Data efficiency
- Extrapolation beyond training set (generalization)
- Sometimes:
 - Improves computational efficiency
 - Reduces # of parameters and overfitting

Softmax normalization across volume

Patrick et al. 2021, Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers

UNIVERSITY OF

- Computational complexity: $\mathcal{O}(S^2T^2)$
- Infeasible for long and high-res videos
- Can we get closer to $\mathcal{O}(ST)$?

Bertasius et al., Is space-time attention all you need for video understanding? In ICML, 2021.

Softmax normalization

- Significant computation/memory gains: spatial attn $O(S^2T)$, temporal attn $O(ST^2)$
- Still has a quadratic bottleneck in each dimension
- Axis-aligned pooling is artificial

Moving camera + moving objects

Bertasius et al., Is space-time attention all you need for video understanding? In ICML, 2021.

Arnab et al., Vivit: A video vision transformer, 2021.

Trajectory attention: motivation

• Aim: find other patches that contain the ball and aggregate their information into a single output

• Why?

- To leverage **multiple views** of the same object to better understand its properties
- To reason about the **motion** of the object

• How?

• Attention: computes feature similarities across space-time and pools information

Reference patch

Softmax normalization **per frame**

- Overall complexity: $\mathcal{O}(S^2T^2)$
 - No better than before
 - Needs to be improved by other means

Computational efficiency

Idea: Take inspiration from **matrix factorization** methods / low-rank decomposition

Cost of multiplying this matrix by an arbitrary vector: $\mathcal{O}(S^2T^2) \rightarrow \mathcal{O}(STP)$

Xiong et al., Nyströmformer: A Nyström-based algorithm for approximating self-attention. In AAAI, 2021.

Beltagy et al., Longformer: The long-document transformer, 2020.

Choromanski et al., Rethinking attention with performers. In ICLR, 2021

- Not just multiplication, in general: $A \approx f(\ ,\)$
- Due to the softmax, attention matrices usually have high rank
 - ⇒ Poorly approximated by PCA/low-rank decompositions
- Prototypes must be few, and representative of all keys/queries

Computational efficiency

Formulate attention probabilistically

Attention operator defines a **parametric** ٠ **model** of the probability of event A_{ii} (assignment of key i to query i), with a multinomial logistic function:

$$P(A_{i:}) = S(\mathbf{q}_i^\mathsf{T} \mathbf{K})$$
Softmax Query vector Key vectors
Introduce **latent variables** $U_{jl}^{(concatenated)}$
(assignment of key *j* to prototype *l*)

Then (without approximation):

$$P(A_{ij}) = \sum_{\ell} P(A_{ij} \mid U_{\ell j}) P(U_{\ell j})$$

- But, $P(A \mid U)$ is intractable \rightarrow approximate with a similar parametric model $\mathcal{O}(S^2T^2) \to \mathcal{O}(STP)$
- All together: •

Selecting prototypes

Priorities:

- Dynamically adjust to keys/queries to ensure their region is reconstructed well
- Minimize redundancy between prototypes

Some suboptimal choices:

- Trainable vectors (not adaptive)
- Random sampling from keys/queries (often selects collinear vectors)
- Clustering keys/queries online (expensive)

 K_{2}

 Q_{2}

 K_1

 K_2

 $P_1 \perp P_2 \perp P_3$

 $P_1 \parallel P_2 \perp P_3$

Patrick et al. 2021, Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers

Selecting prototypes

Objective: Select the **most orthogonal** subset of keys/queries

A greedy algorithm:

 $X \leftarrow$ random subset of $K \cup Q$ For $l \in \{1, ..., |P|\}$: $i^* \leftarrow \underset{i}{\operatorname{argmin}} \sum_{j=1}^{l-1} \left| \left\langle X_i, P_j \right\rangle \right|$ $P_{l} \leftarrow X_{i^{*}}$

 Q_2 $P_1 \parallel P_2 \perp P_3$ K_2 $P_1 P_2 P_3$

 K_{2}

 $P_1 \perp P_2 \perp P_3$

 \mathbf{X}^{K_2}

Comparison to state-of-the-art on the Long Range Arena benchmark

Model	ListOps	Text	Retrieval	Image	Pathfinder	Avg↑	GFLOPS↓	Mem.↓
Exact [76]	<u>36.69</u>	63.09	78.22	31.47	66.35	55.16	1.21	4579
Performer-256 [14]	36.69	63.22	78.98	29.39	66.55	54.97	<u>0.49</u>	885
Nyströmformer-128 [85]	36.90	<u>64.17</u>	<u>78.67</u>	36.16	52.32	53.64	0.62	<u>745</u>
Orthoformer-64	33.87	64.42	78.36	<u>33.26</u>	<u>66.41</u>	55.26	0.24	344

- Best overall results with far fewer prototypes (64) than other methods
- About half the memory and GFLOPS of the best approximations
- No loss of performance on average (unlike the other approximations)

Comparison on action recognition datasets (Kinetics-400, Something-Something)

(a) Orthoformer is competitive with Nyström.

(b) Selecting orthogonal prototypes is the best strategy.

Attention	Approx.	Mem.	K-400	SSv2	Attention	Selection	Mem.	K-400	SSv2
Trajectory (E)	N/A	7.4	79. 7	66.5	Trajectory (E)	N/A	7.4	79. 7	66.5
Trajectory (A)	Performer	5.1	72.9	52.7	Trajectory (A)	Seg-Means	3.6	75.8	60.3
	Nyströmformer	3.8	77.5	64.0		Random	3.6	76.5	62.5
	Orthoformer	3.6	77.5	63.8		Orthogonal	3.6	77.5	63.8

Application: action recognition

- Use ViT [1] as the base model (12 layers / 12 attention heads / embeddings size 768)
- Separate space and time positional encodings (TimeSformer [2])
- Cubic image tokenization (ViViT [3])
- Adding our Trajectory Attention

Datasets:

- Kinetics-400/600 (appearance cues are more dominant)
- Something-Something V2 (motion cues are more dominant)
- Epic Kitchens 100

Keeps objects **consistent** across different action classes

[1] Dosovitskiy et al., An image is worth 16x16 words: Transformers for image recognition at scale. In ICLR, 20

[2] Bertasius et al., Is space-time attention all you need f video understanding? In ICML, 2021.

[3] Arnab et al., Vivit: A video vision transformer, 2021.

Train model on single frames only and assess drop in performance

UNIVERSITY OF OXFORD

Comparison of attention mechanisms

Attention	K-400	SSv2
Joint Space-Time Divided Space-Time	79.2 78.5	64.0 64.2
Trajectory	79.7	66.5

Experiments: benchmark results

			U						
Model	Pretrain	Top-1	Top-5	GFLOPs × views	Method	Pretrain	Top-1	Top-5	GFLOPs×views
SlowFast 25	K-400	61.7	-	65.7×3×1	I3D 10	IN-1K	72.1	89.3	108×N/A
TSM 46	K-400	63.4	88.5	$62.4 \times 3 \times 2$	R(2+1)D 75	-	72.0	90.0	$152 \times 5 \times 23$
STM 33	IN-1K	64.2	89.8	$66.5 \times 3 \times 10$	S3D-G 84	IN-1K	74.7	93.4	142.8×N/A
MSNet 40	IN-1K	64.7	89.4	$67 \times 1 \times 1$	X3D-XL 24	-	79.1	93.9	$48.4 \times 3 \times 10$
TEA 45	IN-1K	65.1	-	$70 \times 3 \times 10$	SlowFast 25	-	79.8	93.9	$234 \times 3 \times 10$
bLVNet 23	IN-1K	65.2	90.3	$128.6 \times 3 \times 10$	VTN 51	IN-21K	78.6	93.7	4218×1×1
VidTr-L 44	IN-21K+K-400	60.2	-	351×3×10	VidTr-L 44	IN-21K	79.1	93.9	$392 \times 3 \times 10$
Tformer-L 7	IN-21K	62.5	-	$1703 \times 3 \times 1$	Tformer-L ₇	IN-21K	80.7	94.7	$2380 \times 3 \times 1$
ViViT-L 2	IN-21K+K-400	65.4	89.8	$3992 \times 4 \times 3$	MViT-B 22	-	81.2	95.1	$455 \times 3 \times 3$
MViT-B 22	K-400	67.1	90.8	$170 \times 3 \times 1$	ViViT-L [2]	IN-21K	81.3	94.7	3992×3×4
Mformer	IN-21K+K-400	66.5	90.1	369.5×3×1	Mformer	IN-21K	79.7	94.2	369.5×3×10
Mformer-L	IN-21K+K-400	68.1	91.2	1185.1×3×1	Mformer-L	IN-21K	80.2	94.8	1 <u>185</u> 1×3×10
Mformer-HR	IN-21K+K-400	67.1	90.6	958.8×3×1	Mformer-HR	IN-21K	81.1	95.2	958.8×3×10

(a) Something–Something V2

(b) Kinetics-400

- SOTA on SSv2 (+1%), which is more reliant on motion cues
- Competitive with the much larger ViViT-L model on K400

(c) Epic-Kitchens

(d) Kinetics-600

Method	Pretrain	А	V	N	Model	Pretrain	Top-1	Top-5	GFLOPs × views
TSN 78	IN-1K	33.2	60.2	46.0	AttnNAS 81	-	79.8	94.4	-
TRN 86	IN-1K	35.3	65.9	45.4	LGD-3D 56	IN-1K	81.5	95.6	-
TBN 36	IN-1K	36.7	66.0	47.2	SlowFast 25	-	81.8	95.1	$234 \times 3 \times 10$
TSM 46	IN-1K	38.3	67.9	49.0	X3D-XL 24	-	81.9	95.5	$48.4 \times 3 \times 10$
SlowFast 25	K-400	38.5	65.6	50.0	Tformer-HR [7]	IN-21K	82.4	96.0	1703×3×1
ViViT-L [2]	IN-21K+K-400	44.0	66.4	56.8	ViViT-L [2]	IN-21K	83.0	95.7	3992×3×4
Mformer	IN-21K+K-400	43.1	66.7	56.5	MViT-B-24 22	-	83.8	96.3	236×1×5
Mformer-L	IN-21K+K-400	44.1	67.1	57.6	Mformer	IN-21K	81.6	95.6	369.5×3×10
Mformer-HR	IN-21K+K-400	44.5	67.0	58.5	Mformer-L	IN-21K	82.2	96.0	1185.1×3×10
					Mformer-HR	IN-21K	82.7	96.1	$958.8 \times 3 \times 10$

- SOTA on Epic-Kitchens Nouns (+2.3%), which is more reliant on motion cues
- Competitive performance on K600

UNIVERSITY OF

Experiments: attention maps

Conclusions

- ✓ Aggregating information along implicit motion trajectories can inject a helpful inductive bias into video transformers
- ✓ Quadratic dependency on input size can be reduced to linear
- ✓ Orthogonality is the most effective prototype selection criteria
- ✓ SOTA results on **motion-focused** datasets

Algorithm 1 Orthoformer (proposed) attention1: $\mathbf{P} \leftarrow \text{MostOrthogonalSubset}(\mathbf{Q}, \mathbf{K}, R)$ 2: $\Omega_1 = S(\mathbf{Q}^\top \mathbf{P}/\sqrt{D})$ 3: $\Omega_2 = S(\mathbf{P}^\top \mathbf{K}/\sqrt{D})$ 4: $\mathbf{Y} = \Omega_1(\Omega_2 \mathbf{V})$

Thank you

^{*}Equal Contribution