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• Proxy for other video recognition tasks 
(  classification for images)

• Often requires fine-grained distinctions between 
subtle motions

• Often requires long-range associations
• E.g.:  swing dancing vs. salsa dancing; 

         dribbling basketball vs. dunking basketball; 
         catching ball vs. throwing ball; 
         ...

≈

Salsa 
dancing

Swing dancing

Recognising actions in video
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Recognising actions in video



Patrick et al. 2021, Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers 4

Recognising actions in video

• Camera motion
• Object motion
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Convolutional networks
Convolutions limit the receptive field, 
both spatially and temporally
• Alleviated with atrous convolution
• Receptive field varies with resolution 

and framerate; 
can be difficult to tune

Tran et al., Learning spatiotemporal features with 3D convolutional networks. In ICCV, 2015.
Carreira & Zisserman, Quo vadis, action recognition? A new model and the Kinetics dataset. In CVPR, 2017.
Tranet et al., A closer look at spatiotemporal convolutions for action recognition. In CVPR, 2018.
Wang et et al., Non-local neural networks. In CVPR, 2018.
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Transformer networks
• Long-range associations / receptive field covers the 

full input at all stages
• Very little inductive bias compared to CNNs 

 often harder to train, but more flexible
• Computation grows quadratically with input 

(  for input with  frames and  pixels)

⇒

𝒪(𝑆2𝑇 2) 𝑇 𝑆

Patrick et al., Support-set bottlenecks for video-text representation learning. In ICLR, 2021.
Dosovitskiy et al., An image is worth 16x16 words: Transformers for image recognition at scale. In ICLR, 
2021.
Touvron et al., Training data-efficient image transformers & distillation through attention. In ICML, 2021.
Doersch et al., Crosstransformers: spatially-aware few-shot transfer. In NeurIPS, 2020.
Torresani et al., Is space-time attention all you need for video understanding? In ICML, 2021.

Background
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Physical motivation:
• Camera motion does not affect 

scene properties
• Motion path and appearance of an object 

can be disentangled
• Translation equivariance is a subset of this 

desired behaviour

Advantages:
• Data efficiency
• Extrapolation beyond training set 

(generalization)
• Sometimes:

• Improves computational efficiency 

• Reduces # of parameters and overfitting

Inductive biases in video processing
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Video attention strategies: joint space-time



Patrick et al. 2021, Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers 9

Video attention strategies: joint space-time
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Video attention strategies: joint space-time

Softmax normalization  
across volume
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Video attention strategies: joint space-time
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Video attention strategies: joint space-time

• Computational complexity: 
• Infeasible for long and high-res videos
• Can we get closer to ?

𝒪(𝑆2𝑇 2)

𝒪(𝑆𝑇 )

Bertasius et al., Is space-time attention all you need for video understanding? In ICML, 
2021.
Arnab et al., Vivit: A video vision transformer, 2021.
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Video attention strategies: divided space-time
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Video attention strategies: divided space-time
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Video attention strategies: divided space-time

Softmax normalization
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Video attention strategies: divided space-time
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Video attention strategies: divided space-time
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Video attention strategies: divided space-time
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Video attention strategies: divided space-time

• Significant computation/memory gains: spatial attn  , temporal attn
• Still has a quadratic bottleneck in each dimension
• Axis-aligned pooling is artificial

𝒪(𝑆2𝑇 ) 𝒪(𝑆𝑇 2)

Bertasius et al., Is space-time attention all you need for video understanding? In ICML, 
2021.
Arnab et al., Vivit: A video vision transformer, 2021.

Moving camera + moving objects
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• Aim: find other patches that contain the ball and 
aggregate their information into a single output

• Why?
• To leverage multiple views of the same object 

to better understand its properties
• To reason about the motion of the object

• How?
• Attention: computes feature similarities across 

space-time and pools information

Reference patch

Time →

Trajectory attention: motivation
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Trajectory attention
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Trajectory attention

Softmax normalization  
per frame
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Trajectory attention
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Trajectory attention
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Trajectory attention
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Trajectory attention

• Overall complexity: 
• No better than before
• Needs to be improved  

by other means

𝒪(𝑆2𝑇 2)
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Idea: Take inspiration from matrix factorization methods / low-rank decomposition

Xiong et al., Nyströmformer: A Nyström-based algorithm for 
approximating self-attention. In AAAI, 2021.
Beltagy et al., Longformer: The long-document transformer, 2020.
Choromanski et al., Rethinking attention with performers. In ICLR, 
2021.

• Not just multiplication, in general: 

• Due to the softmax, attention 
matrices usually have high rank

     Poorly approximated by 
      PCA/low-rank decompositions

• Prototypes must be few, and 
representative of all keys/queries

𝐴 ≈ 𝑓(    ,   )

⇒

𝐴
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Keys

Cost of multiplying this matrix by an 
arbitrary vector: 𝒪(𝑆2𝑇 2) → 𝒪(𝑆𝑇𝑃 )

Computational efficiency
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Formulate attention probabilistically
• Attention operator defines a parametric 

model of the probability of event  
(assignment of key  to query ), with a 
multinomial logistic function:

• Introduce latent variables  
(assignment of key  to prototype )

𝐴𝑖𝑗
j 𝑖

 𝑈𝑗𝑙
𝑗 𝑙

• Then (without approximation):

• But,  is intractable ➔ 
approximate with a similar parametric 
model

• All together:

𝑃 (𝐴 |𝑈 )

Computational efficiency

Softmax Query vector Key vectors 
(concatenated)

𝐴 ≈

Q
ue
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s

Keys
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𝒪(𝑆2𝑇 2) → 𝒪(𝑆𝑇𝑃 )
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Priorities:
• Dynamically adjust to keys/queries to 

ensure their region is reconstructed well
• Minimize redundancy between 

prototypes
Some suboptimal choices:
• Trainable vectors (not adaptive)
• Random sampling from keys/queries 

(often selects collinear vectors)
• Clustering keys/queries online 

(expensive)

Selecting prototypes
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Objective: 
Select the most orthogonal subset of 
keys/queries

A greedy algorithm:
random subset of  

For : 

     

    

𝑋 ←   𝐾 ∪ 𝑄
𝑙 ∈ {1,…, 𝑃 }

𝑖∗ ← argmin
𝑖 ∑

𝑙−1

𝑗=1 ⟨𝑋𝑖, 𝑃𝑗⟩
𝑃𝑙 ← 𝑋𝑖∗

Selecting prototypes
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Experiments: approximating attention

Comparison to state-of-the-art on the Long Range Arena benchmark

• Best overall results with far fewer prototypes (64) than other methods
• About half the memory and GFLOPS of the best approximations
• No loss of performance on average (unlike the other approximations)
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Experiments: approximating attention

Comparison on action recognition datasets (Kinetics-400, Something-Something)
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Experiments: setup

Application: action recognition
• Use ViT [1] as the base model (12 layers / 12 attention heads / embeddings size 768)
• Separate space and time positional encodings (TimeSformer [2])
• Cubic image tokenization (ViViT [3])
• Adding our Trajectory Attention
Datasets:
• Kinetics-400/600 (appearance cues are more dominant)
• Something-Something V2 (motion cues are more dominant)
• Epic Kitchens 100

[1] Dosovitskiy et al., An image is worth 16x16 words: 
Transformers for image recognition at scale. In ICLR, 2021.
[2] Bertasius et al., Is space-time attention all you need for 
video understanding? In ICML, 2021.
[3] Arnab et al., Vivit: A video vision transformer, 2021.

Keeps objects consistent 
across different action classes
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Experiments: setup

Train model on single frames only and assess drop in performance
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Experiments: attention ablation

Comparison of attention mechanisms
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Experiments: benchmark results

• SOTA on SSv2 (+1%), which is more reliant on motion cues
• Competitive with the much larger ViViT-L model on K400
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Experiments: benchmark results

• SOTA on Epic-Kitchens Nouns (+2.3%), which is more reliant on motion cues
• Competitive performance on K600
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Experiments: attention maps
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Conclusions

✓ Aggregating information along implicit motion 
trajectories can inject a helpful inductive bias 
into video transformers

✓ Quadratic dependency on input size can be 
reduced to linear

✓ Orthogonality is the most effective prototype 
selection criteria

✓ SOTA results on motion-focused datasets
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Thank you
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