Keeping Your Eye on the Ball: Trajectory Attention for Video Transformers

Mandela Patrick*[†], Dylan Campbell*, Yuki M. Asano*, Ishan Misra, Florian Metze, Christoph Feichtenhofer, Andrea Vedaldi, João Henriques Facebook AI Research and Visual Geometry Group, University of Oxford *Equal contribution [†]mandelapatrick1@gmail.com

Motivation

- Action recognition requires fine-grained distinctions between subtle motions that evolve over many frames.
- Video transformers can make the requisite long-range associations, but have very little inductive bias and quadratic complexity.
- Can we design an attention module that has a motion-inductive bias and is computationally tractable for long videos?

Trajectory Attention

- ► Aim: Find all patches with the same object and pool information.
- ► Why? Multiple views to better understand the object and its motion.
- ► How? Attention to compute and pool patch similarities over space-time.

A reference patch (a) is compared to every other patch to obtain a heatmap (b), which is softmax-normalized *per frame* (c). A weighted sum is taken for each frame (d), resulting in one embedding vector per frame per reference patch, which are pooled via 1D temporal attention (e).

Orthoformer Linear Attention Approximation

Formulate attention probabilistically: a parametric model of the probability of event A_{ij} (assignment of key j to query i). Introduce latent variables $U_{j\ell}$ (assignment of key j to prototype ℓ).

$$P(A_{ij}) = \sum_{\ell} P(A_{ij} \mid U_{\ell j}) P(U_{\ell j}) P(U_$$

Dynamically select the most orthogonal keys/queries as prototypes to minimize redundancy.

Ablation Studies

Table: Attention ablations: We compare trajectory attention with alternatives and ablate its design choices. We report GFLOPS and top-1 accuracy (%) on K-400 and SSv2. Att_T: temporal attention, Avg_T: temporal averaging, Norm_{ST}: space-time normalization. Norm_S: spatial normalization.

•						
Att _T	Avg _T	Norm _S	Norm _{ST}	GFLOPS	K-400	SSv2
	—	—	-	180.6	79.2	64.0
_	—	—	-	185.8	78.5	64.2
X	\checkmark	\checkmark	X	180.6	76.0	60.0
\checkmark	X	×	\checkmark	369.5	77.2	60.9
\checkmark	×	\checkmark	×	369.5	79.7	66.5
	Att _T ✓ ✓	Att _T Avg _T - $- -\checkmark \checkmark\checkmark \checkmark\checkmark \checkmark$	AttAvgNorm $ \checkmark$ \checkmark	Att T Avg T Norm ST Norm ST ×✓✓×✓×✓✓✓×✓×	Att _T Avg _T Norm _S Norm _{ST} GFLOPS - - - 180.6 - - - 185.8 X \checkmark \checkmark X 180.6 \checkmark \checkmark \checkmark \checkmark 180.6 \checkmark \checkmark \checkmark \checkmark 180.6 \checkmark \checkmark \checkmark \checkmark 369.5 \checkmark \checkmark \checkmark X 369.5	Att TAvg TNorm SNorm STGFLOPSK-400 $ -$ 180.679.2 $ -$ 185.878.5X \checkmark XX180.676.0 \checkmark X \checkmark \checkmark 369.577.2 \checkmark X \checkmark X369.579.7

Table: Trajectory Approximation ablations: We ablate various aspects of our attention approximation: 1) approximation method 2) prototype selection strategy.

(a) Orthoformer is competitive with Nyströmformer.					(b) Selecting orthogonal prototypes is the best strategy.					
Attention	Approx.	Mem.	K-400	SSv2	v2 Attention Selection Mem. K-40					
Trajectory (E)	N/A	7.4	79.7	66.5	Trajectory (E)	N/A	7.4	79.7	66.5	
Trajectory (A)	Performer	5.1	72.9	52.7	Trajectory (A)	Seg-Means	3.6	75.8	60.3	
	Nyströmformer	3.8	77.5	64.0		Random	3.6	76.5	62.5	
	Orthoformer	3.6	77.5	63.8		Orthogonal	3.6	77.5	63.8	

Long Range Arena Benchmark

Table: Comparison to the state-of-the-art on Long Range Arena benchmark. GFLOPS and CUDA maximum Memory (MB) are reported for the ListOps task

Model	ListOps	Text	Retrieval	Image	Pathfinder	Avg↑	GFLOPS↓	Mem.↓		
Exact	36.69	63.09	78.22	31.47	66.35	<u>55.16</u>	1.21	4579		
Performer-256	36.69	63.22	78.98	29.39	66.55	54.97	0.49	885		
Nyströmformer-128	36.90	<u>64.17</u>	78.67	36.16	52.32	53.64	0.62	<u>745</u>		
Orthoformer-64	33.87	64.42	78.36	33.26	<u>66.41</u>	55.26	0.24	344		
Best overall results with far fewer prototypes (64)										

- About half the memory and GFLOPS
- ► No loss of performance on average

Comparison to State-of-the-Art Approaches

(a) Something–Something V2					(b) Kinetics-400				
Model	Pretrain	Top-1	Top-5	GFLOPs × views	Method	Pretrain	Top-1	Top-5	GFLOPs×views
SlowFast 25	K-400	61.7	-	65.7×3×1	I3D 10	IN-1K	72.1	89.3	108×N/A
TSM [46]	K-400	63.4	88.5	$62.4 \times 3 \times 2$	R(2+1)D 75	-	72.0	90.0	$152 \times 5 \times 23$
STM [33]	IN-1K	64.2	89.8	$66.5 \times 3 \times 10$	S3D-G [84]	IN-1K	74.7	93.4	142.8×N/A
MSNet 40	IN-1K	64.7	89.4	$67 \times 1 \times 1$	X3D-XL [24]	-	79.1	93.9	$48.4 \times 3 \times 10$
TEA [45]	IN-1K	65.1	-	$70 \times 3 \times 10$	SlowFast 25	-	79.8	93.9	$234 \times 3 \times 10$
bLVNet 23	IN-1K	65.2	90.3	$128.6 \times 3 \times 10$	VTN 51	IN-21K	78.6	93.7	4218×1×1
VidTr-L 44	IN-21K+K-400	60.2	-	351×3×10	VidTr-L 44	IN-21K	79.1	93.9	$392 \times 3 \times 10$
Tformer-L [7]	IN-21K	62.5	-	$1703 \times 3 \times 1$	Tformer-L[7]	IN-21K	80.7	94.7	$2380 \times 3 \times 1$
ViViT-L [2]	IN-21K+K-400	65.4	89.8	3992×4×3	MViT-B 22	-	81.2	95.1	$455 \times 3 \times 3$
MViT-B 22	K-400	67.1	90.8	$170 \times 3 \times 1$	ViViT-L [2]	IN-21K	81.3	94.7	3992×3×4
Mformer	IN-21K+K-400	66.5	90.1	369.5×3×1	Mformer	IN-21K	79.7	94.2	369.5×3×10
Mformer-L	IN-21K+K-400	68.1	91.2	$1185.1 \times 3 \times 1$	Mformer-L	IN-21K	80.2	94.8	1185.1×3×10
Mformer-HR	IN-21K+K-400	67.1	90.6	958.8×3×1	Mformer-HR	IN-21K	81.1	95.2	958.8×3×10

SOTA on SSv2 (+1%), which is more reliant on motion cues Competitive with the much larger ViViT-L model on K400

	(d) Kinetics-600								
Method	Pretrain	А	V	N	Model	Pretrain	Top-1	Top-5	GFLOPs × views
TSN [78]	IN-1K	33.2	60.2	46.0	AttnNAS [81]	-	79.8	94.4	-
TRN [86]	IN-1K	35.3	65.9	45.4	LGD-3D 56	IN-1K	81.5	95.6	-
TBN 36	IN-1K	36.7	66.0	47.2	SlowFast 25	-	81.8	95.1	$234 \times 3 \times 10$
TSM [46]	IN-1K	38.3	67.9	49.0	X3D-XL 24	-	81.9	95.5	$48.4 \times 3 \times 10$
SlowFast 25	K-400	38.5	65.6	50.0	Tformer-HR [7]	IN-21K	82.4	96.0	1703×3×1
ViViT-L [2]	IN-21K+K-400	44.0	66.4	56.8	ViViT-L [2]	IN-21K	83.0	95.7	3992×3×4
Mformer	IN-21K+K-400	43.1	66.7	56.5	MViT-B-24 22	-	83.8	96.3	236×1×5
Mformer-L	IN-21K+K-400	44.1	67.1	57.6	Mformer	IN-21K	81.6	95.6	$369.5 \times 3 \times 10$
Mformer-HR	IN-21K+K-400	44.5	67.0	58.5	Mformer-L	IN-21K	82.2	96.0	$1185.1 \times 3 \times 10$
					Mformer-HR	IN-21K	<u>82.7</u>	96.1	958.8×3×10

SOTA on Epic-Kitchens Nouns (+2.3%), competitive on K600

Trajectory Attention Maps

Learned attention maps implicitly track query points across time.

References

- [1] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia Schmid. Vivit: A video vision transformer. In ICCV, 2021.
- [2] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for video understanding? In ICML, 2021.

Key Conclusions

Trajectory Attention: aggregating information along implicit motion trajectories injects a helpful inductive bias.

- Orthoformer: reduces quadratic complexity to linear. ► **SOTA** results on
- motion-dependent datasets such as Something-Something V2, and Epic-Kitchens.

Code

