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Abstract

Deep learning has resulted in ground-breaking progress in a variety of domains, from
core machine learning tasks such as image, language, and video understanding, to
real-world industries such as medicine, autonomous driving, and agriculture. Its
success has been driven by providing neural networks with manual supervision from
large-scale labelled datasets such as ImageNet to automatically learn hierarchical data
representations. However, obtaining large-scale labelled data is often a very time-
consuming and expensive process. To address this challenge, we push the limits of
self-supervision from multi-modal video data. Video data usually contain multiple
modalities such as images, audio, transcribed speech and textual captions freely
available. These modalities often share redundant semantic information and therefore
can serve as pseudo-labels to supervise each other for representation learning without
necessitating the use of manual human labels. Without the reliance on labelled data, we
are able to train these deep representations on very large-scale video data of millions of
video clips collected from the Internet. We show the scalability benefits of multi-modal
self supervision by establishing a new state-of-the-art performance in a variety of
domains: video action recognition, text-to-video retrieval, text-to-image retrieval and
audio classification. We also introduce other technical innovations in terms of data
transformations, model architecture and loss functions to further improve learning these
deep video representations using multi-modal self-supervision. A secondary contribution
of this thesis is new tools to improve the interpretability of deep representations, given
that it is notoriously difficult to decipher the key features encoded in these deep
representations. For images, we show how perturbation analysis can be used to analyze
the intermediate representations of a network. For videos, we propose a novel clustering
method using the Sinkhorn-Knopp algorithm to map deep video representations to
human interpretable semantic pseudo-labels. The contributions in this thesis are steps to

unlocking both the scalability and interpretability of deep video representation learning.
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Introduction

1.1 Background

Machine learning is the subfield of artificial intelligence that seeks to develop algorithms
that can automatically learn from data to improve its predictive and decision-making
ability on a given task. The quality of decisions depends heavily on the space of inputs,
or the data representation. This data representation ideally provides the model with the
key attributes (or features) in the data to solve the given task. For example, classifying
an animal into a semantic class such as a cat, is much easier given key attributes such
as the shape of its head, or its number of legs, compared to given only the numerical
values of the colors in an RGB image. These key attributes are usually not easy to
automatically extract from the data, and therefore obtaining a powerful representation

of the input data is one of the key components of any machine learning system.

Traditionally, these data representations have been hand-crafted. In other words,
humans determine which features are salient for the task and develop algorithms to
extract these manually defined properties from the input data. For example, SIFT [Lowe,
1999] and HOG [Dalal and Triggs, 2005] represent an image as a histogram of image

gradients, in the hope that it will make it easier for the model to detect object edges and
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shapes. While human-interpretable, these handcrafted features are domain-specific and
require domain expertise to determine which features may be salient for a given task.
Furthermore, these hand-crafted features are usually not very performant, with SIF'T
features only able to attain a top-5 accuracy of 73.8% [Lin et al., 2011] on the 2012
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [Russakovsky et al.,
2015]. These challenges with hand-crafted features, along with the breakthrough success
of the AlexNet [Krizhevsky et al., 2012] neural network on the ILSVRC 2012 Challenge,
reignited interest in deep learning [LeCun et al., 2015], where the goal is to automatically
learn hierarchical representations of input data for automatic recognition of patterns
from data such as images, videos, audio, and text using neural networks. Neural
networks and hierarchical features have been a goal since at least the 1960s [Rosenblatt,
1958], but they weren’t very effective [Minsky and Papert, 1969] because of a lack of

computation, stochastic training, and most importantly, large-scale labelled data.

The recent success of deep learning has been driven by the use of neural networks [LeCun
et al., 1998; Hochreiter and Schmidhuber, 1997], and large-scale labelled datasets such
as ImageNet [Deng et al., 2009] and Kinetics [Kay et al., 2017]. With an appropriate
loss function, such as the cross-entropy loss, which penalizes mis-classifications given
the correct labels, these neural networks use the dataset labels to learn hierarchical
and transferable representations [Zeiler and Fergus, 2014; Yosinski et al., 2014] of
the semantic concepts present in the training data. For example, for an image of a
cat paired with the label “cat”, unlike hand-crafted SIFT representations, where the
features are pre-defined using human intuition, a neural network learns to automatically

detect the relevant features to identify the cat in this image.

Learning such hierarchical features is called representation learning. Representation
learning performance has steadily increased over the years largely due to neural
architectural advances. Since the breakthrough of AlexNet [Krizhevsky et al., 2012] on
ILSVRC 2012 challenge, bigger and more powerful neural networks have been developed,
such as VGG [Simonyan and Zisserman, 2015], GoogLeNet [Szegedy et al., 2015] and

ResNet [He et al., 2016], leading to stronger and more transferable representations.
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These neural architecture advances have lead to top-5 classification accuracy on the

ILSVRC challenge increasing from 84.7% to 95.5%.

While it is possible to scale model sizes with advances in graphical processing units
(GPUs), scaling the labelling of large-scale datasets such as ImageNet is not as trivial.
Manual data collection is often expensive and time-consuming [Lin et al., 2014], which
makes it extremely difficult to label datasets of billions of data points to train these
data-hungry networks. Furthermore, labels are very sparse learning signals and can
lead to shortcut learning [Geirhos et al., 2020], such as the model using background
color instead of object shape to recognise the primary object in image representation
learning. This problem is exacerbated for video data [Li et al., 2018], which is even
more high-dimensional. Therefore, this motivates our primary research question: can

we learn deep representations without explicit manual supervision from human labels?

Furthermore, as a secondary contribution, we are interested in whether we can map
these deep representations into a format that is human understandable. Unlike hand-
crafted representations, where the key attributes (features) are pre-defined by humans
and are therefore interpretable, deep representations are usually not due to the many
layers of non-linear data transformations within a neural network. This inspires an

additional research question: can we better interpret deep representations?

1.2 Motivation

Learning Representations with Multi-modal Self-Supervision. While deep
learning has enabled ground-breaking progress in a variety of domains [Ren et al., 2015;
He et al., 2016; Tran et al., 2018], it has traditionally required large-scale labelled
datasets [Deng et al., 2009; Kay et al., 2017] to learn representations. However, these
labels are usually very expensive and time-consuming to obtain and limits the scalability

of training these data-hungry models on very large-scale data.

We draw inspiration from image-based self-supervised learning that use pretext tasks to

automatically generate differentiable learning signals from the data itself in order to
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learn deep representations. By solving a pretext task such as rotation prediction [Gidaris
et al., 2018], where the neural network has to detect the orientation of a rotated image,
the hope is that the network learns a meaningful representation of the data. Due
to photographs normally being taken upright, the neural network has to learn the
difference between “upright objects” vs. rotated ones, and can only solve this task

if it learns to recognize the objects in an image.

In the last few years, there has been rapid progress in image-based self-supervision,
with recent methods [He et al., 2020; Misra and van der Maaten, 2020; Chen et al., 2020;
Grill et al., 2020] even surpassing supervised pre-training when representations are
transferred to downstream tasks such as object detection [Lin et al., 2014; Everingham

et al., 2010], and image classification [Zhou et al., 2017].

Learning deep representations from images is however limiting. Images are a static
representation of our world, and image-based self-supervised learning cannot learn
representations that encode temporal and causal semantics [Gordon et al., 2020].
Furthermore, image-based self-supervision can only capture a uni-modal representation
of the world. In applying deep learning in the real world, unimodal data can often
be corrupted, noisy, or missing, therefore making it difficult for the model to extract

semantic meaning from the input data.

Unlike images, videos offers more dimensions for pre-text tasks such as time [Misra
et al., 2016; Wei et al., 2018; Xu et al., 2019] and multiple modalities, such as
audio [Arandjelovic and Zisserman, 2017], optical flow [Han et al., 2020] and text [Miech
et al., 2020]. Despite recent progress in self-supervised approaches for the video
domain [Misra et al., 2016; Wei et al., 2018; Wang et al., 2019a; Kim et al., 2019; Jing
and Tian, 2018; Han et al., 2019], their performance are still lagging behind supervised
pretraining of representations on large-scale video datasets such as Kinetics [Kay et al.,
2017]. We hypothesize that these visual-only approaches are limiting, and that using
self-supervision from multiple video modalities, such as text and audio, can result in

better deep video representations. First presented in the landmark paper by de Sa
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[1994], multi-modal self-supervision exploits the co-occurrence of multiple-modalities

in natural environments to learn representations.

Why use multiple modalities? With multiple modalities, the sensory inputs are very
different but causally linked (e.g. sound and image produced by the same object).
Therefore, learning the signal in common enables us to get to the cause of this data,
which is an object or event, something with semantic meaning. While within a single
modality, the signal in common between, for example, two adjacent patches of an
image may be a depicted object, it may also simply be interpreted as a texture in
common between the two [Asano et al., 2020a]. Networks can therefore typically solve
pretext tasks in single modalities using more low-level features (simple patterns), while

multi-modality requires higher-level features (semantic concepts).

This intuition is also grounded in how we as humans learn. Humans learn a great deal
from associations between senses: for example, early in development, seeing a face and
hearing a voice teaches us about other people’s presence and identities [Smith and
Gasser, 2005]. The power of learning from multi-modal signals is due to redundancy, or
the overlapping information between modalities, also referred to as degeneracy [Edelman,
1987] in the psychology literature. This phenomenon explains why we can experience
the world even with the loss of sight, because our world experience is present in

sound, movement, touch, and even smell.

Given most videos on the Internet have an accompanying sound track or caption,
learning video representations from multiple modalities is a scalable and practical
solution for self-supervision and we hypothesise that training these neural networks using

extremely large scale datasets is key to unlocking the benefits of multi-modal learning.

Interpreting Deep Representations. This thesis also attempts to make a con-
tribution to solve another key bottleneck of deep representations: their lack of
interpretability. Unlike hand-crafted features, which are usually human-interpretable,
deep representations are often very difficult to interpret and visualize [Samek et al., 2019].

Enabling the interpretability of deep representations is important for a variety of reasons.
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Understanding the key features encoded in a neural network’s representation is
important for wverification of the model’s decision. Neural networks are black box
systems, and therefore it is usually difficult to determine and trust the features used
to make its decision. In certain industries, such as the healthcare or legal system, it
is absolutely imperative for experts to understand the key features used in a model’s
decision for these deep learning systems to be widely used and trusted. This will
allow experts to discover any flaws in logic or systematic biases [Mehrabi et al.,

2019] in the model.

Fundamentally, machine learning systems are being integrated and affecting more
aspects of human life, and therefore, it is important to develop a legal framework around
which to regulate their use. For example, in the near future, when autonomous vehicles
are widely used, explainable models are needed for regulators to accurately assign
responsibility when these systems make a mistake such as during an accident [Alves
et al., 2018] . However, given current deep learning models, it is near impossible
for such legal decisions to be made until we have developed the tools to sufficiently
interpret the salient features encoded in these deep models. Such concerns have led
to the European Union passing new regulations to implement “right to explain” for
machine learning models, where users have the right to access the explanation of

decisions affecting them [Goodman and Flaxman, 2017].

Improving the interpretability of deep representations will also enable humans to
learn from machine learning systems. Due to their ability to learn from millions to
billions of training examples, machine learning systems have achieved super-human
ability in a variety of domains from board-games [Silver et al., 2018] to protein
folding [Jumper et al., 2020]. If we can effectively distill the key features encoded
in these models, there is an opportunity to use these models to teach humans new

skills or discover fundamental science concepts.

With all these use-cases, understanding the key features encoded in deep representations
is extremely important. These are the features encoded in the representation of

the penultimate layer of a neural network, which is the input to the network’s
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Figure 1.1: Deep Representations. A neural network, usually consists of two parts: a
feature extractor (¢), which maps input, x to a data representation € R?, and a classification
layer, which maps the data representation to a label, a human-interpretable output.

classification layer (Fig. 1.1). Understanding the salient features that are encoded
in this representation is key to determining what information is used by the neural
network for its decision. However, most interpretability research has instead focused
on the attribution problem [Simonyan et al., 2014; Fong and Vedaldi, 2017; Selvaraju
et al., 2017], which attempts to understand the salient input features for a model’s
decision. In this thesis, we therefore focus on developing tools to visualize and interpret
the hidden representations of neural networks using perturbation analysis (chap. 7)

and clustering (chap. 8).

1.3 Key Ideas

This thesis is primarily focused on (I) Learning Representations with Multi-Modal

Self-Supervision; and additionally, (II) Interpreting Deep Representations.

In the sections below, we focus on the key ideas present in the thesis and how they

relate to what has been done previously in the literature.

1.3.1 Learning Representations with Multi-Modal
Self-Supervision

To learn a deep representation, there are three main components: (I) Data; (II)

Model; (III) Learning objective.
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Figure 1.2: Key Ideas for Improvement in Multi-Modal Self-Supervision. Here,
we illustrate the key ingredients of learning representations using multi-modal self-supervision.
We systematically explore and present innovations along each axis, significantly pushing

the state-of-the-art.

Data. The two core ideas we explore are data transformations and data scale. Data
transformations have been shown to be a key component of image-based self-supervised
learning [Chen et al., 2020; Asano et al., 2020a]. Transformations such as random
cropping, gaussian blur, rotations, and color jittering, are usually applied to the
input data before being passed into the neural network. These data transformations
serve as priors on the types of invariances and distinctiveness to encode in the

learned representation.

This thesis explores the rich space of data transformations that are possible for video
data and uses it for multi-modal self-supervised representation learning. One of the
key data transformations we explore is modality splicing - which essentially extracts
a modality from a video input. Unlike most previous works which splice the audio
and visual modality [Arandjelovic and Zisserman, 2017; Korbar et al., 2018; Owens
and Efros, 2018] from videos for representation learning, we also explore how other
modalities such as automatic speech recognition outputs in English (chap. 4) and other
languages (chap. 5) can be used as powerful data transformations for representation
learning. We also explore the importance of composing data transformations (chap. 2)
and leveraging within-modality data transformations such as input and feature crops

(chap. 3) to improve representation learning performance.
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Another important dimension we explore is the importance of dataset scale for improving
representation learning performance. Early works use labelled video datasets such as
Kinetics-400 [Kay et al., 2017] and Audioset [Gemmeke et al., 2017] to learn video
representations. While sufficiently large scale, these datasets are limited by the fact that
they were collected for labelling and therefore the size of these datasets are between
200,000 — 1,000,000 videos. In this thesis, we show the importance of leveraging
even larger-scale datasets such as IG65M [Ghadiyaram et al., 2019], a collection of
65 million video clips collected from a social media website, and HT100M [Miech et al.,
2019], an instructional video-text dataset of 130 million video clips collected from
YouTube, for representation learning. With multi-modal self-supervision, we are no
longer bottlenecked by having to collect semantic labels for these datasets and instead
can use the free supervision present in the audio and text modality. We show that with
sufficient data scale, we can push the limits of representation learning, even surpassing

supervised pre-training on the standard Kinetics-400 [Kay et al., 2017] dataset (chap. 2).

Models. The model maps the input data into a data representation. In the case of
multi-modal self-supervision, there is usually an encoder for each modality. Traditionally,
video representations were obtained using 2D convolutional neural networks [LeCun
et al., 1998] for a frame-based encoding, and an aggregation module such as average
pooling or NetVLAD [Arandjelovi¢ et al., 2016] to aggregate these frame-based features
over time. More recently, 3D convolutional neural networks [Tran et al., 2015, 2018;
Feichtenhofer et al., 2019; Xie et al., 2018] were developed to use 3D convolutional
filters to encode short-term temporal dynamics directly in video representations. Other
approaches include two-stream networks [Simonyan and Zisserman, 2014; Feichtenhofer
et al., 2016] which decompose spatial and temporal processing into two convolutional
neural networks. All these architectures try to capture both short and long-term

temporal information in video representations.

In this thesis, we explore how the transformer architecture can be beneficial for encoding

temporal information in video representations (chap. 3 and 6). Transformers [Vaswani
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et al., 2017] are generic neural architectures that use multi-head attention to aggregate
and contextualize feature representations from a sequence, and has shown to to be
extremely successful in the natural language domain [Jacob Devlin and Toutanova,
2018; Brown et al., 2020; Radford et al., 2019]. We demonstrate that the video encoder
in a multi-modal learning setup can benefit from late temporal aggregation using a
shallow transformer (chap. 3) rather than naive average temporal pooling as is common
in most video architectures [Tran et al., 2018; Xie et al., 2018]. Furthermore, we
show that a 3D-convolutional neural network can be fully replaced using a transformer
architecture (chap. 6), building on the success of ViT [Dosovitskiy et al., 2021] in the
image domain. We show that our proposed video transformer attention model can
better model temporal dynamics and motion trajectories outperforming competing

3D convolutional architectures.

Loss Function. To encourage the representation to encode the right features, the
choice of loss function is extremely important. The loss function drives the learning

process and is a key component of the self-supervised learning pipeline.

Traditionally, the binary cross-entropy or triplet (max-margin) objectives [Chopra
et al., 2005] were used in the multi-modal self-supervised learning setup. These
losses encouraged the representation to discriminate visual and aural signals from

the same video from others.

Recently, noise contrastive training [Hadsell et al., 2006; Gutmann and Hyvéarinen, 2010]
has gained popularity to learn self-supervised image representations [Wu et al., 2018; He
et al., 2020; Chen et al., 2020]. In this thesis, we explore how noise contrastive training
can be adapted in the multi-modal setting both for video-text (chap. 4 and 5) and
video-audio (chap. 2 and 3) representation learning. We show that this loss is crucial for

learning strong video representations across a variety of domains and tasks (chap. 2).

We also explore how other learning objectives can improve representations. Specifically,
we show how a reconstruction objective can be used as an auxiliary loss to alleviate some

of the learning pitfalls of the contrastive loss and improve video representations (chap. 4).
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1.3.2 Interpreting Deep Representations

In this thesis, we focus on making a contribution in the following two areas in the inter-

pretability literature: (I) Attribution; (II) Visualizations of intermediate activations.

Attribution. Interpretability research has primarily focused on the attribution
problem i.e. example-level explanations that justifies a model’s output. In computer
vision, the paradigm has been to provide visual explanations of “where” a model is
looking, typically which areas of the image activate each classifier, or each neuron; or
recreating a synthetic view of what the “canonical” image looks like to activate one
neuron. There are mainly two classes of techniques: backpropagation and perturbation
analysis. Backpropagation techniques leverage the gradient [Simonyan et al., 2014],
or some variant of it [Springenberg et al., 2014; Smilkov et al., 2017], to track the
information from the network’s output back to its input to determine which input
features are most sensitive to the output class neuron. Backpropagation techniques can
be further improved by combining the gradient with network weights or activations at
certain layers [Zhou et al., 2016; Selvaraju et al., 2017; Zhang et al., 2018]. Perturbation
analysis, on the other hand, visualize how perturbations of an input affect the output of a
model [Zeiler and Fergus, 2014; Fong and Vedaldi, 2017; Zhou et al., 2015; Ribeiro et al.,
2016]. In this thesis, we improve upon the shortcomings of perturbation analysis [Zeiler
and Fergus, 2014; Fong and Vedaldi, 2017] by removing all tunable hyper-parameters

from the optimization problem in a new approach called extremal perturbations (chap 7).

Visualizations of intermediate activations. Another area of interest in this thesis
is to explain what happens at the feature or model level, such as what a single or
combination of hidden unit encodes. Deconvolution [Zeiler and Fergus, 2014] project the
feature representations back to the input pixel space to understand input stimuli that
most activate feature units. Activation maximisation [Simonyan et al., 2014] learns an
input image that maximally activates a given filter. Feature inversion [Mahendran and

Vedaldi, 2015] learns an image that reconstructs a network’s intermediate activations
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while leveraging a natural image prior for visual clarity. Subsequent works tackled the
problem of improving the natural image prior for feature inversion and/or activation
maximization [Nguyen et al., 2016, 2017; Ulyanov et al., 2020; Olah et al., 2017; Zhou
et al., 2018; Mordvintsev et al., 2018]. Recently, some methods have measured the
performance of single [Zhou et al., 2019; Zhou et al., 2018] and combination [Kim et al.,
2018; Fong and Vedaldi, 2018] of filter activations on probe tasks like classification and
segmentation to learn an alignment between hidden units and visual semantic concepts.
In this thesis, we show that we can extend our extremal perturbation framework to the
intermediate layers of a network to allow us to visualize which channels (or concepts)
are salient for a classification decision. Moreover, we also propose to use clustering
techniques to map deep representations to a human-interpretable psuedo-label. The
intuition is that one can interpret representations by looking not at a single image but
collections of them. e.g. grouping them. While this has been done for images [Asano
et al., 2020b; Caron et al., 2018], it is not trivial for data consisting of multiple

modalities, and we show how to effectively cluster multi-modal video data (chap. 8).

1.4 Thesis Outline and Contributions

In this section, we summarize the contributions of this thesis, and provide an outline
of the chapters. The thesis is divided into two parts — (I) Learning Representations,

(IT) Interpreting Representations.

For Chapters 2 to 8, we summarise the main contributions below. Finally, Chapter 9

discusses the impact of this work and avenues for future exploration.

Part I: Learning Representations Using Multi-Modal Self-Supervision

In chapter 2, we introduce Generalized Data Transformations (GDT), a framework for
multi-modal self-supervision using noise contrastive training. We show the benefits of
composing data transformations such as time shift, time reversal, modality splitting for
learning strong video representations. We also show the benefits of using large-scale

datasets for multi-modal self-supervision by pre-training these video representations on
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two large scale datasets such as IG65M [Ghadiyaram et al., 2019] and HT100M [Miech
et al., 2019]. We set state-of-the-art performance on video action recognition and
audio classification, when these pretrained video representations are finetuned on
smaller-scale datasets such as HMDB-51 [Kuehne et al., 2011}, UCF-101 [Soomro et al.,
2012], ESC-50 [Piczak, 2015] and DCASE-2014 [Stowell et al., 2015].

In chapter 3, we propose two key improvements for multi-modal self-supervision,
namely, incorporating within-modal invariance learning and using transformers for late
temporal aggregation. Most multi-modal representation learning works [Arandjelovic
and Zisserman, 2017; Korbar et al., 2018; Owens and Efros, 2018] only compare
representations from different modalities, with the motivation, that this is a good prior
for learning semantic representations. We show that cross-modal learning can be further
improved by comparing representations of differently cropped versions of the video input,
thereby encoding within-modal invariance. We show that this can be done efficiently
by performing the cropping in feature space rather than input space. We also propose
the use of a shallow transformer aggregation layer instead of temporal average pooling

as an orthogonal, but additive, contribution to improve video representation learning.

In chapter 4, we perform multi-modal self- supervision using video and text as modalities.
Similarly to our work with GDT, we show the scalability of having not to rely on labels
by training on the large-scale HT100M video dataset [Miech et al., 2019], consisting of
over 120 million video clips. We also attempt to alleviate one of the pitfalls of noise
contrastive learning — false negatives — by adding a reconstruction loss to the learning
objective. By forcing the model to reconstruct the caption from a video representation
that is weighted combination of different video embeddings from a support-set, we

hope it forces the model to discover semantic relationships between different videos.

In chapter 5, we demonstrate the benefits of using captions in multiple languages as
another “modality” for multi-modal self-supervision. We introduce a new dataset,
Multi-HT100M, which is a multilingual version of the large-scale HT100M dataset in
9 languages. With large-scale pretraining on this dataset using a multilingual text

encoder and video encoder, we are able to perform zero-shot text-to-video retrieval in
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new languages and even improve English-to-video retrieval state-of-the-art on common
benchmarks such as MSR-VTT [Xu et al., 2016] and VATEX [Wang et al., 2019b]. With
a small amount of finetuning, our model can generalize to a new domain, text-to-image

search, where we also improve upon the state-of-the-art.

In chapter 6, we propose Motionformer, a transformer architecture for learning video
representations that aggregates features along implicitly determined motion paths.
We show that this motion inductive bias is key for injecting temporal information in
these transformer models and allow us to set state-of-the-art performance on various

video action recognition datasets.

Part II: Interpreting Representations

In chapter 7, we propose a principled approach to the attribution problem using
extremal perturbations. Given a network’s output decision, extremal perturbations
allows a human user to identify which parts of the input image are most salient for the
network’s outputs. Furthermore, we show how the extremal perturbation framework
can be extended to intermediate deep representations of the neural network, allowing
a human user to visualize the key features encoded in the representation that were
important for model’s output. While attribution at the input layer is easy to visualize
using a heatmap, at an intermediate layer, it’s more difficult. We show how combining
feature inversion with our extremal perturbation framework, one can visualize the

combination of channels (features) most salient for model’s output decision.

In chapter 8, we explore interpretability of deep representations using clustering. A
representation is a mapping from data to a vector in R% and by definition is naturally
un-interpretable to a human. We therefore propose to map representations to a
high-level pseudo-label that a human can understand. To achieve this, we develop a
technique that can automatically discover clusters from multi-modal representations

via Sinkhorn-knopp [Cuturi, 2013], an efficient optimal transport algorithm.
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Abstract

In the image domain, excellent representations can be
learned by inducing invariance to content-preserving trans-
formations via noise contrastive learning. In this paper, we
generalize contrastive learning to a wider set of transforma-
tions, and their compositions, for which either invariance
or distinctiveness is sought. We show that it is not imme-
diately obvious how existing methods such as SimCLR can
be extended to do so. Instead, we introduce a number of
formal requirements that all contrastive formulations must
satisfy, and propose a practical construction which satisfies
these requirements. In order to maximise the reach of this
analysis, we express all components of noise contrastive
Sformulations as the choice of certain generalized transfor-
mations of the data (GDTs), including data sampling. We
then consider videos as an example of data in which a large
variety of transformations are applicable, accounting for
the extra modalities — for which we analyze audio and text
— and the dimension of time. We find that being invariant
to certain transformations and distinctive to others is crit-
ical to learning effective video representations, improving
the state-of-the-art for multiple benchmarks by a large mar-
gin, and even surpassing supervised pretraining. Code and
pretrained models are available'.

1. Introduction

Works such as MoCo [31], SImCLR [13], SWAV [12]
and BYOL [25] have shown that it is possible to pre-train
state-of-the-art image representations without the use of any
manually-provided labels. Furthermore, many of these ap-
proaches use variants of noise contrastive learning [26, 27].

*Joint first authors
Thttps://github.com/facebookresearch/GDT
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Fig. 1: Hierarchical sampling process of generalized data
transformations (GDTs). Shown here are the five transfor-
mations analyzed for the audio-visual training case and their
compositions: data-sampling (¢1), time-shift (¢2), modality
splicing (¢3), time-reversal (t4), and augmentation trans-
formations, g (¢5) to learn video representations via noise
contrastive learning.

Their idea is to learn a representation that is invariant to trans-
formations that leave the meaning of an image unchanged
(e.g. geometric distortion or cropping) and distinctive to
changes that are likely to alter its meaning (e.g. replacing an
image with another chosen at random).

These prior works have also shown that the choice

of transformations is of primary importance for perfor-
mance [12, 13]. This is not just a matter of selecting a



certain type of transformation, but also to specify how dif-
ferent transformations should be composed, and how these
compositions should be sampled to from batches for training
the model. So far, these choices have been mostly driven
by intuition, with little formal understanding of why certain
choices may be preferable, and how these choices can be
generalized.

In this work, we answer some of these questions via a for-
mal analysis of composable transformations in contrastive
learning. Our analysis shows how invariance and distinc-
tiveness to individual transformations can be meaningfully
incorporated in the same learning formulation. It also pro-
vides some principles to guide the construction of the train-
ing batches. We interpret existing sampling schemes, such
as the one in SimCLR, as special cases with certain potential
advantages and disadvantages. We do so by showing how
these constructions can be extended systematically to any
composition of invariant and distinctive transformations.

Furthermore, we demonstrate the utility of our analysis by
exploring contrastive methods for learning representations
of video data. Compared to images, videos contain a time
dimension and multiple modalities, which have been shown
to provide effective learning cues; for instance [60] leverages
multiple modalities, and [15, 41] the time dimension. We
show how these effects can be incorporated in a uniform
manner in contrastive learning by considering a suitable class
of generalized data transformations (GDTs). GDTs capture
standard augmentations, as well as temporal transformations,
modality slicing and data sampling. The advantages of using
GDTs is that they allow us to base the entire design of the
learning formulation (e.g., how to write a coherent learning
objective and how to sample batches) on a small number of
design principles that our analysis has identified.

With this, we make some notable findings for contrastive
video representation learning. First, we show that using
this wider class of transformations greatly exceeds the per-
formance that can be obtained by a vanilla applications of
image-centric methods such as SImCLR to video data. By
leveraging time and multiple modalities, we obtain large per-
formance gains, almost doubling the performance. Second,
we show that just learning representations that are invariant
to more and more transformations is not optimal, at least
when it comes to video data; instead, combining invariance
to certain factors with distinctiveness to others performs bet-
ter. To the best of our knowledge, this is the first time such
an effect has been demonstrated in contrastive learning.

We also set the new state of the art in audio-visual rep-
resentation learning, with both small and large video pre-
training datasets on a variety of downstream tasks. In par-
ticular, we achieve 94.1% and 67.4% on the standardized
UCF-101 [67] and HMDB-51 [42] action recognition bench-
marks, when pretrained on HowTo100M [50], and 95.2%
and 72.8% respectively when pretrained on IG65M [21].

2. Related work

Self-supervised learning from images and videos. A
variety of pretext tasks have been proposed to learn repre-
sentations from unlabelled images. Some tasks leverage
the spatial context in images [17, 56] to train CNNs, while
others create pseudo classification labels via artificial ro-
tations [23], or clustering features [0, 10, 11, 12, 22, 37].
Colorization [83, 84], inpainting [62], solving jigsaw puz-
zles [57], as well as the contrastive methods detailed below,
have been proposed for self-supervised image representation
learning. Some of the tasks that use the space dimension
of images have been extended to the space-time dimensions
of videos by crafting equivalent tasks. These include jig-
saw puzzles [40], and predicting rotations [38] or future
frames [28]. Other tasks leverage the temporal dimension
of videos to learn representations by predicting shuffled
frames [53], the direction of time [76], motion [74], tempo-
ral ordering [43, 80], and playback speed [9, 14, 19]. These
pretext-tasks can be framed as GDTs.

Multi-modal learning. Videos, unlike images, are a
rich source of a variety of modalities such as speech, au-
dio, and optical flow, and their correlation can be used as a
supervisory signal. This idea has been present as early as
1994 [16]. Only recently, however, has multi-modal learning
been used to successfully learn effective representations by
leveraging the natural correspondence [2, 4, 5, 7, 54, 60] and
synchronization [15, 41, 59] between the audio and visual
streams. A number of recent papers have leveraged speech
as a weak supervisory signal to train video representations
[46, 49, 55, 68, 69] and recently [1], who use speech, au-
dio and video. Other works incorporate optical flow and
other modalities [29, 30, 64, 85] to learn representations. In
CMC [70], representations are learned with different views
such as different color channels or modalities to solely in-
duce multi-view invariance. In contrast, our work extends
this to and analyses multi-modal transformations and ex-
amines their utility as an invariant or distinctive learning
signal.

Noise Contrastive Loss. Noise contrastive losses [206,

] measure the similarity between sample pairs in a repre-
sentational space and are at the core of several recent works
on unsupervised feature learning. They yield good perfor-
mance for learning image [ 13, 31, 33, 35, 45, 52, 58, 70, 71,

] and video [3, 28, 34, 46, 49, 54, 66, 68, 82] represen-
tations, and circumvent the need to explicitly specify what
information needs to be discarded via a designed task.

We leverage the noise contrastive loss as a learning frame-
work to encourage the network to learn desired invariance
and distinctiveness to data transformations. The GDT frame-
work can be used to combine and extend many of these cues,
contrastive or not, in a single noise contrastive formulation.
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Fig. 2: Example instantiation. The embedding is learned
via noise contrastive (NCE) learning. Here we show the
case of audio-visual sample and time-shift distinctiveness:
video-audio embeddings from the same video at the same
time are pulled together, while audio-visual sample pairs
from different videos and different starting times are pushed
apart.

3. Method

We generalize contrastive methods such as CPC [58],
PIRL [52], MoCo [31], SimCLR [13], and SWwAV [12] to
learn representations that can be invariant or distinctive to
any number of transformations.

Given a collection x of data such as images or videos, we
generate training samples

.I‘(tl,...,tM) S

by applying a sequence of M transformations
T = (t1,...,ty) to the collection. We consider typ-
ical transformations such as data augmentations (e.g.,
randomly cropping an image). We also find it useful
to express in the same manner other operations such as
extracting a specific image or video from the collection or
extracting a specific modality from a video. We call these
generalized data transformations (GDTSs).

To provide a concrete example, in a standard contrastive
learning formulation such as SimCLR, the first transfor-
mation t; = ¢ € {1,...,|z|} extracts an image z; from
the collection = and the second transformation ¢ = g ap-
plies to it a random augmentation, so that we can write
x(t1,t2) = g(z;). The goal is to learn a representation
® : X — R that identifies the image regardless of the
augmentation; in other words, ® should be invariant to the
choice of t5 and distinctive for the choice of #;.

We wish to generalize this construction to richer data
such as videos. Compared to images, videos contain multi-
ple modalities and additional dimensions, which allows to
consider qualitatively different transformations such as time

shift, time reversal, and modality slicing. This generalization
is however non-trivial. First, when considering M > 2 trans-
formations, we have a choice of making the representation
invariant or distinctive to each of them independently. For
instance, video representations may benefit from being dis-
tinctive to time shift and/or time reversal rather than invariant
to them. It is not immediately obvious how contrastive learn-
ing should be modified to incorporate these different choices.
Another less apparent but important issue is how training
data batches should be formed. Contrastive learning for-
mulations minimize, in fact, a loss that involves comparing
(contrasting) the representations of different samples, and is
thus not decomposable. In practice, the loss is approximated
by sampling batches of data, and how this is done has a major
effect on the performance. In the previous example of Sim-
CLR, if transformation (¢1,t2) is included in the batch, so
must be a complementary transformation (¢1, t5) that differs
only in the second factor ¢ # t5. This is required in order
to learn the desired invariance. It also means that transfor-
mations in a batch cannot be sampled independently. A way
to guarantee that both (¢1,¢2) and (¢, ¢5) are in the batch
is to consider all possible combinations 7; X 72 of two sets
of transformations 7; and 73. However this is statistically
inefficient because it applies the same augmentations 7 to
all images in the batch. Instead, SImCLR samples at random
B/2 images and then applies to them B independently sam-
pled augmentations. This is better than the scheme above
that would only use B/|7;| = 2 different augmentations.
However, it is unclear how this strategy for sampling diverse
transformations can be extended to M > 2 factors. This is
studied next.

3.1. Compositional contrastive learning

Given a batch T of data transformations, we consider the
learning objective:

L@;T) == T, Tw(T,T')
7' €T
(@@ (7)), ®(x(T"))) /p

Sw(T,T") e(2(x(T)),2(z(T")))/p
T"eT

-log )]

where p > 0 is a temperature parameter. The contrast
Sunction ¢(T,T") € {0,1} has the following interpreta-
tion: when ¢(T,T") = 1, then the representations ®(z(T'))
and ®(x(7T")) are pulled together (invariance), and when
¢(T,T") = 0 they are pushed apart (distinctiveness). For
example, in SImCLR, we set ¢(T,T") = ¢((i,9), (i',9')) =
d;—i to push apart the representations of different images
(,4") while remaining invariant to a transformation pair
(9,9"). The weight function w is a second binary func-
tion that focuses learning on more informative transforma-
tion pairs; for instance, SimCLR sets w(T,T") = dp7+ to



avoid focusing learning invariance to identical transforma-
tion T = T as this is trivially satisfied. Next, we provide a
semi-formal analysis of this formulation, leaving the details
to Appendix A.1.

Multiple invariances and distinctiveness. The key to ex-
tending eq. (1) to M > 2 transformation is to build the
function ¢(T,T"). We do this one factor a time. If we
wish the representation to be distinctive to factor ¢,,, we set
c(tm,t,) = 0¢,, =t . If we wish it to be invariant to it, we
set ¢(tm, t,,) = 1. In lemmas 4 and 5 (Appendix A.1), we
show that, given these choices, the only consistent definition
of ¢(T,T") is the product Hﬁle ¢(tm, t,). The intuition is
as follows: The representation ® should distinguish samples
x(T) and z(T") if, and only if, at least one of the distinctive
factors in T and 7" differs.

Forming a batch. Given c, the remaining challenge is to
sample training batches 7 appropriately. We start by deriv-
ing some requirements for 7 and then develop a sampling
scheme that satisfies them (none of these are guaranteed
by sampling 7" and 7" independently). (i) First, in order
for eq. (1) not to be identically zero, ¢(T,T") should be
non-zero for at least some choices of T' and 7" in the batch.
(ii) Furthermore, when ¢(T', T") = 1, this should not be for
the trivial case 7' = T" (the one that SimCLR discounts by
setting w(7T, T') = 0). Based on the discussion above, the
condition ¢(T',T') =1 A T # T’ means that all distinctive
factors in 7" and T" agree and that at least an invariant factor
differs. (iii) Additionally, for the fraction in eq. (1) not to be
a constant, if ¢(T,T") = 1, there should be another 7" in
the batch such that ¢(T',T") = 0. The latter means that at
least one distinctive factor in 7" and T differs.

Short of considering all possible combinations of trans-
formations (which, as explained above, can be statistically
inefficient), we can sample a batch 7 that satisfies these con-
straints as follows. We describe this process for the case of
M = 3 transformations, but note that it extends immediately
to any M (this is done in Appendix A.1.1 and A.1.2). First,
we sample K versions of the first distinctive transforma-
tions ¢1. Then, for each ¢, we sample K5 transformations
t9, also distinctive. Finally, for each choice of (t1,t2), we
sample K3 invariant transformations #3.> We thus obtain a
batch of | 7| = K1 K2 K3 transformations.

This scheme has several desirable properties. First, for
every T = (ty,t2,t3), there is another 7" = (ty,ta,1%)
that agrees on the distinctive factors and differs in the in-
variant one (properties (i) and (ii)). Second, there is a
T" = (t1,th,t5) or T = (t},th,t5) that differs in one
or more distinctive factors (property (iii)). Third, the con-
struction is balanced, in the sense that the number of trans-
formations that share a particular factor value ¢,,, is the same

Note that the sampling ordering is arbitrary; in particular, it needs not
to be the same as the ordering in which transformations are applied to the
data.

for all values of ¢, (this number is |7|/(K - - - K,)). Fur-
thermore, SimCLR is obtained as a special case. Please
see lemmas 6 and 7 (Appendix A.1) for an in-depth discus-
sion.

Limitations. Despite the benefits, this scheme has also
some limitations. The main issue is that a difference in fac-
tor t,,, generally implies a difference in all subsequent factors
as well, meaning that the representation may be unable to
observe and thus learn to discriminate changes in all individ-
ual factors. In Appendix A.1.3, we show why this is unlikely
to be an issue for the practical cases considered here and in
the literature. However, we also suggest other practical cases
where this can be a significant issue, affecting even methods
such as SimCLR.

3.2. Properties of Generalized Data Transforma-
tions

In this section, we show that GDT’s batch sampling strat-
egy is statistically more efficient than naively-sampled pairs
for contrastive learning. We do this by showing that GDT’s
objective has the same mean but a lower variance than sam-
pling batches with eq. 1 directly, which would either enu-
merate all possible pairs of transformations (which is pro-
hibitively expensive) or subsample it by sampling transfor-
mations independently. We assume that the distinctive trans-
formations are injective. This must be approximately true,
otherwise it is impossible for any method to be distinctive
to such transformations. In fact, we can prove the following
result:

Theorem 1. Given a set of transformations T, of which the
distinctive transformations are injective, GDT is an unbiased
estimate L of the generalized contrastive loss (eq. 1), i.e.
E[L] = L(®;T). Furthermore, consider a batch of sam-
pled compositions of M transformations, with size H;w K,
where K., is the number of samples for the mth transfor-
mation. Define K; = HjeIKj and Ky = Hjev K,
where I and V are the subsets of indices corresponding
to invariant and distinctive transformations, respectively.
Denote by L;; and ‘732‘]" the mean and variance of the par-
tial sum of the objective (eq. 1) on the set X; X X, with
Xj = {x(T",T}) : T' € T1}, i.e. the sample pairs corre-
sponding to distinctive transformations with indices j and
j'. Then, the variance of the GDT estimate is

Kyv,Kv

2
Z Ty

Jj’

A 1
R

The naive estimate’s variance, on the other hand, is
. 1 Ky ,Kv 1 Kv,Kv )
VILd =gz Do Tt DL Ly — L)
VrI S5 14 s
i i
which is larger by a multiplicative factor of K%, and a further
additive factor. Proof: See Appendix A. O



This states that sampling data with GDT yields reduced
variance, resulting in higher-quality gradients for learning
the same objective (since the estimate is unbiased), which is
reflected empirically in our strong performance on numerous
datasets and benchmarks. We note that this may apply to
other methods built on the same sampling strategy but which
compose transformations in different ways than GDT, as
long as the requirements (i-iii) for forming a batch (sec. 3.1)
are satisfied.

3.3. Application to video data

As a concrete instantiation of our framework, we con-
sider video data and transformations of the type 1T' =
(t1,to,t3,t4,t5) = (i, 7,m, 7, g), as shown in fig. 1, as fol-
lows. The first component ¢ selects a video in the dataset. We
sample K; > 2 indices/videos and assume distinctiveness,
so that ¢(i,i’) = §;—,. The second component 7 contrasts
different temporal shifts. We sample K. = 2 different val-
ues of a delay 7 uniformly at random, extracting a 1s clip x;,
starting at time 7. For this contrast, we will test the distinc-
tiveness and invariance hypotheses, as [4 1] indicate that the
former may be preferable. The third component m contrasts
modalities, projecting the video x;, to either its visual or au-
dio component m(z;, ). We assume invariance ¢(m, m’) = 1
and always sample two such transformations m,, and m,, to
extract both modalities, so K,,, = 2. The fourth component
r contrasts time reversal [63, 76], which has not previously
been explored in a contrastive or cross-modal setting. This is
given by a transformation € R = {ro, r1}, where ¢ is the
identity and r; flips the time dimension of its input tensor, so
K, = 2. The final component g applies a spatial and aural
augmentation z(7T") = g(r(m(z;.))), also normalizing the
data. We assume invariance ¢(g, g’') = 1 and pick K, = 1,
i.e. augment each datum at this level in the sampling hier-
archy. These choices lead to K = K; K. K,,, K, K, = 8K;
transformations 7" in the batch 7 (in ablations, we also test
a subset of these choices).

While we focus on modality splitting, time reversal and
shift, note that we could use any transformation that can yield
a useful learning signal, such as speed [9, 14, 18, 36, 75, 81]
and temporal ordering [20, 43, 53, 80].

Modality splitting. The modality splitting transformation
m is useful to capture correlation between modalities [4,

, 41, 60, 76]. Modality splitting means that the nature of
the sample x(i, 7, m,r, g) is either a sequence of frames
(m = m,) or a sound (m = m,). Formally, this means
that x(i,7,m,r, g) is an element of the direct sum X, &
X, of visual and audio signals; likewise g, » and ® are
defined on this direct sum. In practice, this means that the
transformation g comprises a pair of augmentations (g., ga ),
where g, (v) extracts a fixed-size tensor by resizing to a fixed
resolution of a random spatial crop of the input video v,
and g, (a) extracts a spectrogram representation of the audio

signal followed by SpecAugment [61] with frequency and
time masking. Likewise, ® = (®,, ®,) comprises a pair
of neural networks, one for each modality, both valued in
R? (refer to Appendix A.3.4 for architectural details). In
the Appendix A.3.1, we show that modality splitting is key
for performance; thus, we extend SimCLR weight function
w to focus learning on only cross-modal pairs: w(7T,T) =
5i;£i . 5m;ﬁm’~

3.4. Discussion: utility of GDT

With our framework, we can now generalize current state
of the art contrastive learning approaches such as SimCLR
in a systematic and practical manner. The theory above and
in Appendix A.1 tells us what is the meaning of composing
transformations, how a batch should be sampled and why,
how this can be achieved by using a hierarchical sampling
scheme that extends SimCLR, and what are the limitations of
doing so. A particular benefit is to allow to specify individu-
ally, for each transformation, if invariance or distinctiveness
is sought, whereas previous works lack this distinction and
largely considered learning only invariances (SimCLR [13],
AVID [54]), or distinctiveness (AoT [76]) to all factors. This
property allows the flexible utilization of dataset specific
transformations in the case of prior knowledge, or, as we
have shown in this study, the exploration of useful signals
by enumeration. Finding the best transformation signals
can even be further optimized by methods such as Bayesian
optimization. Finally, compared to a direct application of
previous state-of-the-art methods image-based methods such
as SimCLR [13], PIRL [52], and MoCo [31], we can also
seamlessly incorporate important cues such as cross-modal
correlation, greatly improving downstream performance (see
table A.1).

4. Experiments

We compare self-supervised methods on pretraining
audio-visual representations. Quality is assessed based on
how well the pretrained representation transfers to down-
stream tasks. We conduct a study on video-audio, as well
as video-text unsupervised representation learning to show
the generality of our framework and then compare our best
setup to the state of the art.

Self-supervised pretraining. For pretraining, we con-
sider two standard pretraining datasets: Kinetics-400 [39]
and HT100M [50] and use R(2+1)D-18 [72] and a 2D
ResNet [32] as encoders (see Appendix for further details).
We also explore how our algorithm scales to even larger,
less-curated datasets and train on IG65M [21] as done in
XDC [2].

Downstream tasks. To assess the pretrained representa-
tion f,, we consider standard action recognition benchmark
datasets, UCF-101 [67] and HMDB-51 [42]. We test the per-
formance of our pretrained models on the tasks of finetuning



Table 1: Learning hypothesis ablation. Results on action
classification performance on HMDB-51 is shown for fine-
tuning accuracy (Acc) and frozen retrieval (recall@1) after
pretraining on Kinetics-400 for 50 epochs. GDT can lever-
age signals from both invariance and stronger distinctiveness
transformation signals. We consider data-sampling (DS),
time-reversal (TR) and time-shifting (TS).

DS TR TS Mod. Acc. RQ1
SimCLR-like: DS-distinctiveness only
(@) d . V 446 118
b d i . vV 369 13.3
(c) d . i VvV 359 153
@ d i i vV 378 139
Cross-modal
(e) d . . AV 524 218
® d i . AV 588  22.6
gy d . i AV 574 235

) d i i AV 599 248

Cross-modal +1 distinctive factor

) d d AV 578  26.1
G) d : d AV 587 221
k) d d i AV 61.1 254
@ d i d AV 614 271
Cross-modal + 2 distinctive factors

(m)y d d d AV 572 205

the pretrained representation, conducting few-shot learning
and video action retrieval. The full details are given in the
Appendix.

4.1. Analysis of generalized data transformations

In this section, we conduct an extensive study on each
parameter of the GDT transformation studied here, T' =
(i,7,m,r,g), and evaluate the performance by finetuning
our network and conduncting video retrieval on the HMDB-
51 action recognition benchmark.

SimCLR-like baseline. First, we use the framework to
test a direct extension of SIimCLR to video data, as shown
in Table 1(a)-(d). By this, we mean utilizing only the visual
modality (V), and only invariance to transformations, which
is standard in all recent self-supervised methods [13, 31, 77].
For this, we consider GDTs of the type T' = (i, m 7,7, g)
described above and set K; = 512 (the largest we can fit
in our setup). In row (a), we pick only the video modality
(m = m, so K,, = 1). We also sample a single shift
7 (so K = 1), which results in data augmentation but
does not learn shift invariance, and no time reversal r = 1
(so K, = 1) — these are denoted with a - in the table.
However, we do sample two visual augmentations g (K, =
2), emulating SimCLR and learning invariance to that factor.

Table 2: GDT on video-text HT100M dataset. We also
find the positive effect of including more modalities and
find non-trivial combinations of beneficial transformations
previously unexplored.

DS TR TS Mod. Acc
SimCLR-like

(@ d . . vV 361
Video-text cross-modal

b d . . VT 59.2
c© d d . VT 61.5
@ d d VT 62.9
e d d i VT 63.8
) d 1 d VT 64.4
(g d d d VT 644

We also set all transformation components to invariance
(c(tm,1,,) = 1) except the first that does sample selection.
In row (b-d) we also experiment with adding invariance to
time shift (TS) and time reversal (TR), by setting K, = 2
and K, = 2. We find that doing so consistently degrades the
finetuning accuracy performance, but increases the retrieval
performance somewhat, indicating that the model is not able
to fully leverage these augmentation signals in a meaningful
way.

Cross-modal learning. Next, in rows (e-h) we repeat this
experiment, but using both audio-visual modalities (AV) by
setting K,,, = 2. In this case, as explained above, we set the
weight w to only consider cross-modal interactions and set
K, = 1. We note two facts: First, the performance increases
substantially (+7.8% (e) vs (a-d)). Second, now TS and TR
invariance leads to significant improvements (up to +7.5%).
Invariance vs distinctiveness. Next, in rows (i-1), we ex-
plore the effect of being invariant or distinctive to individual
transformations, which is unique to our method. Comparing
row (h) to rows (k) and (1), we see that switching to distinc-
tiveness to one of TS or TR further improves performance
(up to +1.5%). On the other hand, ‘ignoring’ either (- sym-
bols in lines (g) and (j)) is worse than learning invariance ((h)
and (1)), with a difference of around 2.5%. Finally, in row
(m) we find that being distinctive for both TS and TR at the
same time is worse, suggesting that a mix of distinctiveness
and invariance is preferable. This is particularly true for the
retrieval metric (column R@1).

4.2. Textual modality

In table 2, we demonstrate the generality of our approach
by using ASR captions as an alternative modality (instead
of audio) for the HowTo100M dataset [50]. For the text
encoder, we use a simple Word2Vec [51] embedding with a
MLP (further details are provided in the Appendix). Com-



paring table 2(a) with (b), we find that switching from Sim-
CLR to a cross-modal baseline increases performance by
more than +22%. Furthermore, we find gains of 3.7% when
switching from data-sampling distinctiveness only (row (b))
to incorporating further distinctivenesses (rows c-d). Finally,
we find that — as in the video-audio case — combining time-
shift distinctiveness with time-reversal invariance leads to
particularly strong representations (row (f)), yielding bene-
fits of over +5% compared to data-sampling distinctiveness
alone. Compared to video-audio learning (table 1(m)), we
find the case of distinctive-only for video-text learning (ta-
ble 2(g)) to be highly competitive, highlighting the need to
explore the set of possible transformation signals to achieve
the best downstream performance.

Intuition. While we only analyse a subset of possible
transformations for video data, we nevertheless find con-
sistent signals across both video-audio and video-text learn-
ing: Inclusion of further distinctivenesses to TS and TR
always improve upon the basecase and the best setup is
achieved for TS distinctiveness and TR invariance. One ex-
planation for this might be that there is useful signal in both
of these transformations that are not captured by previous
“augmentation-only” naive noise-contrastive formulations.
For example, for time-shift (TS), the model profits from
having to differentiate different points in time, e.g. between
an athlete running vs an athlete landing in a sandpit, which
could be both in the same video. This intuitively serves as
a hard negative for the model, increasing its discriminative
power. For time reversal (TR), many actions depicted such as
moving an object are inherently invariant to reversing time,
as shown in [65], therefore yielding a gain when used as an
augmentation. In [76], they show that humans have a 20%
error-rate when classifying a video’s direction of time in
Kinetics-400, thus demonstrating that Kinetics-400 has sub-
sets of videos that look realistic even when reversed. These
findings that additional distinctiveness combined with invari-
ances improve video representation learning are noteworthy,
as they contradict results from the image self-supervised
learning domain, where learning pretext-invariance can lead
to more transferable representations [52]. Even when com-
pared to previous self-supervised learning approaches for
video-data, such as predicting the arrow of time [76], our
method yields new insights by showing that a unique combi-
nation of distinctivenesses and invariances performs best, at
least on the training sets considered. Combining these points,
the strong performance of GDT is founded in its ability to
leverage highly informative, yet “free”, signal that we have
from construction of the transformations.

4.3. Qualitative analysis

Here, we study what effect the different transformations
we let our model be invariant and distinctive to have on
our learned representations. For this, we compare against

Time shifts

Frequency

0.028 0.030 0.032 0.034 0.036 0.038 0.040 0.042
Avg. standard deviation

Fig. 3: Learning distinctiveness to time-shifts: our GDT
model from Tab.1(j) is able to differentiate features from the
same video at different times better than a simple SimCLR
variant (Tab.1(a)).

Table 3: Video retrieval and Few Shot Learning. Retrieval
accuracy in (%) via nearest neighbors at various levels of neigh-
borhood sizes and few shot learning accuracy (%) via a k-
nearest neighbor on frozen representations.

HMDB UCF
1 5 1 5

Random 3.0 3.5 23 4.6

% 3DRot[38] - - 150 315
GDT (ours) 143 154 267 446
SP-Net [0] ) ~ 130 281
VCP [14] 76 244 186 336
M-DPC[29] 7.7 257 202 404

S VSP[14] 103 266 246 419
S CoCLR[30] 232 432 533 694
S SclaVi[5] 248 476 520 68.6

GDT (ours) 26.1 51.7 62.8 79.0

the SimCLR baseline of Tab.1(a) and compare the average
standard deviation of the normalized features for 10 time-
shifted clips per video for 3000 randomly selected Kinetics-
400 validation set.

4.4. Comparison to the state of the art

Given one of our best learning setups from Sec. 4.1 (row
(1)), we train for longer and compare our feature representa-
tions to the state of the art on standard downstream bench-
marks.

4.4.1 Downstream benchmarks

For few-shot classification, as shown in table 3, we signifi-
cantly beat the 3D-Rotnet [38] baseline on UCF-101 by more
than 10% on average for each shot with our Kinetics-400
pretrained model.



Table 4: State-of-the-art on video action recognition with
full-finetuning. Self- and fully-supervisedly trained meth-
ods on UCF-101 and HMDB-51 benchmarks.

Method Data Top-1 Acc%

HMDB UCF
Supervised [79] K-400+IN  75.9 96.8
Supervised [2] K-400 65.1 94.2
AoT [76] K-400 - 79.4
MultiSensory [59] K-400 - 82.1
SeLaVi [5] K-400 47.1 84.2
PEMT [44] K-400 - 85.2
XDC [2] K-400 52.6 86.8
AV Sync+RotNet [78]  K-400 54.6 87.0
CoCLR [30] K-400 54.6 87.9
SeCo [82] K-400 55.6 88.3
AVTS [41] K-400 56.9 85.8
CPD [46] K-400 57.7 88.7
AVID [54] K-400 60.8 87.5
CM-ACC [47] K-400 61.8 90.2
GLCM [48] K-400 61.9 91.2
GDT (ours) K-400 62.3 90.9
MIL-NCE [49] HT100M  61.0 91.3
GDT (ours) HTI00M  67.4 94.1
XDC [2] 1G65M 68.9 95.5
GDT (ours) 1G65M 72.8 95.2

For video retrieval, we report recall at 1 and 5 retrieved
samples for split-1 of the HMDB-51 and UCF-101 datasets
in table 3.Using our model trained on Kinetics-400, GDT sig-
nificantly beats all other self-supervised methods. In partic-
ular, we outperform CoCLR [30], a recent state-of-the-art
self-supervised method, that uses optical flow as another
view to mine hard positive to improve instance discrimi-
nation learning for video representations. Moreover, we
surpass SeLLaVi, an audio-visual clustering and representa-
tion learning method, by 2% and 10% on average on recall
at 1 and 5 for HMDB-51 and UCF-101.

For video action recognition, we finetune our GDT pre-
trained network for UCF-101 and HMDB-51 video classifi-
cation, and compare against state-of-the-art self-supervised
methods in table 4. When pretrained on the Kinetics datasets,
we find that our GDT pretrained model achieves very good
results, outperforming all recent methods. In particular, we
outperform audio-visual pretraining methods, AVTS [41],
SeLaVi [5] and XDC [2], by large margins using the same
architecture (R(2+1)D-18) and dataset (Kinetics-400), show-
ing the effectiveness of our GDT pre-training approach. We
also surpass AVID [54], the state-of-the-art audio-visual rep-
resentation learning method, by 1.5% on HMDB-51 and
3.8% on UCF-101. AVID uses a variant of the pre-training

scheme of our baseline approach that extends noise con-
trastive learning to the audio-visual domain as in Table 1,
row (e). However, while AVID simply encodes sample dis-
tinctiveness and invariance to modality in its visual represen-
tations, we are able to encode invariances and distinctiveness
to additional transformations, which significantly improves
our performance. Our approach is also more sample ef-
ficient, as we are able to achieve our results with 300 less
epochs of training. Finally, when pretrained on HT100M, we
achieve strong gains of +6.4% on HMDB-51 and +2.8% on
UCF-101 compared to the state-of-the-art video text method,
MIL-NCE [49]. Similar to AVID, MIL-NCE uses a vari-
ant of the baseline cross-modal contrastive framework to
learn representations, while we are able to improve upon
this baseline by learning invariance and distinctiveness to
additional transformations such as time reversal and time
shift. Moreover, with HT100M pre-training, we outperform
the Kinetics supervised baseline using the same architecture
when finetuned on HMDB-51 (67.4 vs 65.1) and are on par
for UCF-101 (94.1 vs 94.2). We further show the scalability
and flexibility of our GDT framework by pretraining on the
IG65M dataset [21]. With this, our visual feature represen-
tation sets a new state of the art among all self-supervised
methods, particularly by a margin of > 4% on the HMDB-51
dataset. On UCF-101, we set similar state-of-the-art perfor-
mance with XDC. Along with XDC, we beat the Kinetics
supervised pretraining baseline using the same architecture
and finetuning protocol.

5. Conclusion

We introduced the framework of Generalized Data Trans-
formations (GDTs), which allows one to capture, in a single
noise-contrastive objective, cues used in several prior con-
trastive and non-contrastive learning formulations, as well
as easily incorporate new ones. The framework shows how
new meaningful compositions of transformations can be ob-
tained, encoding valuable invariance and distinctiveness that
we want our representations to learn. Following this method-
ology, we achieved state-of-the-art results for self-supervised
pretraining on standard downstream video action recognition
benchmarks, even surpassing supervised pretraining. Over-
all, our method significantly increases the expressiveness of
contrastive learning for self-supervision, making it a flexible
tool for many multi-modal settings, where a large pool of
transformations exist and an optimal combination is sought.
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A. Appendix

A.1. Foundations of compositional contrastive
learning

In this section, we develop more formally a basic theory
of compositional contrastive learning formulation, providing
rigorous grounds for the approach described in Sec. 3.

Consider the problem of learning a function f : X — ).
In a contrastive setting, we are not given information about
the values of f; instead, we are given a contrast function
c: X x X — {0,1} which only tells for which pairs of
points z; and x5 f is the same and for which it differs:

Definition 1. The function f is compatible with the contrast
cif, and only if, for all x1,x5 € X:

(&1, 82) = O (e1)=f(2)-
A contrast function cannot be arbitrary:

Lemma 1. The predicate c¢(x1,x2) = 1 is an equivalence
relation if, and only if, there exists a function f compatible
with c.

Proof. If ¢(x1,x2) = 1 defines an equivalence relation on
A, then such a function is given by the projection on the
quotient f : X — X/c = ). On the other hand, setting

c(r1,22) = Of(zy)=f(z;) = 1 for any given function f
is reflexive, symmetric and transitive because the equality
f(z1) = f(x2) is. O

Definition 2. The contrast function c is admissible if, and
only if, c(x1,x2) = 1 defines an equivalence relation.

Full knowledge of the contrast function c only specifies
the level sets of the function f:

Lemma 2. Let f be any function compatible with the ad-
missible contrast c. Then, we can write f = 1o f as the
composition of an injection v : X/ f — Y and the (unique)
projection f : X — X/cof X onto the equivalence classes
X /¢ of the equivalence relation c(x1,x2) = 1.

Proof. From elementary algebra, we can decompose any
function f : X — ) as

frxLtixysy

where ¢ is an injective function and f projects X to the quo-
tient X'/ f, i.e. the collection of subsets X C X where f(x)
is constant (level sets). The latter are also the equivalence
classes of the relation f(z1) = f(x2). Due to definition I,
this is the same equivalence relation given by the contrast c,
sothat X/ f = X/c. O

Note that, in our contrastive learning formulation, we do
not define the contrast c on the sample space X', but rather on
the transformation space 7. The following lemma suggests
that defining a contrast ¢(7',7") on transformations instead
of data samples is usually acceptable:

Lemma 3. Letc : T x T — {0,1} be an admissible
contrast function defined on a set (e.g., a batch) of gen-
eralized data transformations T. Furthermore, let x be a
dataset and let ©(T) € X be the sample indexed by trans-
Sformation T. If x(T) = z(T") = T = T’ (i.e. differ-
ent transformations output different samples), then setting
é(x(T),z(T")) = c(T,T") defines part of an admissible
sample contrast function ¢ on X.

Proof. The expression above defines ¢ on the sample space
X = {2(T) : T € T} C X. Reflexivity, symmetry and
transitivity are inherited from c. However, if the same data
point (7)) = z(T") can be obtained from two different
transformations 7" and 7", the definition is ill posed. The
hypothesis in the lemma guarantees that this is not the case.

O

A.1.1 Compositional transformations

Next, we consider the case in which T' = (¢1,...,t5) isa
composition of individual transformations ¢.,,, each with its
own contrast t,,,:

Definition 3. We say that a contrast function c(tm,t' ) is
distinctive if it is given by 6y, —y, . We say that it is invariant
if it is identically one.

The following lemma provides a formula for the overall
contrast function ¢(7T', T') given the contrasts for the individ-
ual factors.

Lemma 4. Let ¢(t,,,t),) = 1 be admissible contrast func-
tions, either distinctive or invariant. Then, the product
(T, T = H%zl c(tm, th,) is also admissible.

Proof. The reflexive and symmetric properties are obviously
inherited. For the transitive property, note that ¢(T,T") = 1
if, and only if, Vm : ¢(t, t,,) = 1. Hence:

o(T,T') = o(T',T") = 1
= Ym:c(tm,t,) = c(t, tm) =1

m?'m

= Vm:cltm,th)=1 = T,7")=1.
O

Finally, we show that, essentially, the formula above is
the only reasonable one. For this, we only require ¢(T',T")
to be monotonic in the individual factors; i.e., if more factors
become 1, then ¢(T,T") can only grow:



Definition 4. We say that ¢(T,T") is monotonic in the indi-
vidual factors if, and only if, for any three transformations
T, T, T" such that c¢(tm,t'm) < c(tm,tr,) for all the fac-
tors, then we also have c(T,T") < ¢(T,T").

Next, we show that c can only have a very limited form:

Lemma 5. Suppose that the admissible monotonic contrast
o(T,T") is expressible solely as a function of the individual
admissible contrasts ¢(tm,t'm) form = 1,..., M. Then,
up to a permutation of the transformations, we can always
write

m

oD, 1) = [ elts t's)

i=1
where 0 < m < M. In particular, m = M is the only
option that is guaranteed not to ignore some of the factors.

Proof. From the assumptions, we can write
(T, T = hov(T,T)
where h is a function of the binary vector
o(T,T') = (c(t1,t'1), ... c(tar, t'ar)) € BM.

Furthermore, since invariant factors are constant, they do not
affect the function; hence, without loss of generality we can
assume that all factors are distinctive.

Since all factors are distinctive, we can construct two
transformations 77 = (t'y,...,t'p) and T" = (¢, ..., th,)
such that v(77,7"”) = (0,...,0) (i.e., all the contrasts
c(t' m, tir) are null). If ¢(T",T") = 1, then, due to mono-
tonicity, ¢(7”,T") is identically 1 and the lemma is proved
form = 0.

If not, let ¢(T7,T") = h(0,...,0) = 0. Then, for any
given binary vector v, we can construct a transformation

T = (t1,...,tp)suchthatv(T,T") = vand v(T,T") = v
as follows:
. t, ifu, =1,
m .
t!" ., otherwise.

We cannot have ¢(T,T") = h(v) = h(v) = (T, T") = 1;
otherwise, due to the transitivity of ¢, we would have
e(T", T") = h(0,...,0) = 1, which contradicts our as-
sumption. Hence, h must partition the space of binary vec-
tors in two halves, the ones for which h(v) = 1 and their
complements h(v) = 0.

Now let v be a vector with the minimal number of 1
such that h(v) = 1. Again without loss of generality, we
can assume this is of the type v = (1,...,1,0,...,0) with
m ones in front. Due to monotonicity, all vectors of type
v =(1,...,1,vm41,...,vp) must also have h(v') = 1;
by taking their complement, the previous result shows
that all vectors v”" = (0,...,0, V41, ...,vr) must have
h(v") = 0. This is also the case for any vector of the type

(v1y..,Um,0,...,0) where any v; = Ofor1 < i < m
(because m is the minimum number of ones required for
h(v) = 1). We conclude that h(v) = 1 if, and only if,
(v, om) = (1,...,1). O

A.1.2 Forming batches

Let 7; x --- x Tar be a composite space of generalized
data transformations, so that data points are indexed as
x(t1,...,tn). Furthermore, let ¢(¢,,,t,,) be correspond-
ing admissible contrast functions and let ¢(7T',7") be their
product, as in lemma 4. As before, we assume that the
functions are of two kinds:

e invariant: ¢(ty,,t,,) = 1.

o distinctive: c(tm,t,) = 0t

—t .
m=t,

Let I C {1,..., M} be the subset of indices m correspond-
ing to the invariant transformations and D = {1,..., M }\I
the distinctive ones.

Let sample(7;,; K. m) be a stochastic operator that sam-
ples K,,, < |7'm| transformations from 7,, without replace-
ment. We sample a batch recursively:

e Let 77 = sample(71; K1)
* Let T = Urer,,_, T o sample(Trn; Kom)

At each level of the recursion, each transformation is ex-
tended by sampling K, more transformations (note that
no two identical transformations can be generated in this
manner). Hence |Tas| = K7 -+ K.

Lemma 6. There are exactly ([],, Km)([1,,c; Km) pairs
of transformations (T, T") € Tar X Tar for which ¢(T,T") =
1. Of these, exactly [],, Ky, are trivial pairs (T = T').
Hence, there are ([],, Kim)([1,,c; Km — 1) non-trivial
pairs for which ¢(T,T") = 1.

Lemma 7. Foreach T € Ty, there are exactly ([ ],,, Km)—
(IL.cr Km) pairs (T, T") such that ¢(T,T") = 0.

For example, in SimCLR M = 2, D = {1}, I = {2},
K, = B/2, K5 = 2, |T3| = B, there are B(2—1) = B
non-trivial pairs of transformations for which ¢(7,7") = 1,
and, for each T, there are B — 2 pairs of transformations for
which ¢(T,T") = 0.

The lemmas above suggest that we should pick K, > 2
for at least one invariant factor and at least K,,, > 2 for at
least one distinctive factor, as otherwise eq. (1) is degenerate.

A.1.3 Limitations

In general, we want more restrictive requirements than the
one described above. When learning f, difficult (and there-
fore interesting) cases amount to: learning to be sensitive



to ‘small’ variations in the distinctive factors and learn to
be insensitive to ‘large’ variations in the invariant factors.
For the former, we would like f to observe variations in a
single distinctive factor at a time, as these are the ‘smallest’.
For these individual variations to exist at all in the batch, we
should choose K,,, > 2 for all distinctive factors m € D.

Even so, the hierarchical scheme in general prevents us
from observing all individual variations. In fact, suppose that
two transformations 7" and 7" in T differ for factor m (i.e.
tm # t,,). Then, the remaining factors t,,, 11 # ¢/, .1, ...
also differ in general because successive transformations are
sampled independently in different branches of the tree. This
means that we cannot, in general, observe a change in t,,
alone, so the function f may not learn to be distinctive to
this ‘minimal’ change in isolation.

Note that this is a limitation that affects our sampling
scheme as well as existing methods such as SimCLR. For-
tunately, in practice this is often not an issue. There are in
fact two mitigating factors, which apply to most existing
formulations, including the new ones presented here.

First, some transformations spaces 7T, are very small, and
in fact binary (e.g., modality splitting, time reversal). In this
case, K, = 2 means that transformations are sampled ex-
haustively, so for level m the hierarchical sampling scheme
does extract all possible combinations of transformations.

Second, in other cases the issue is moot due to the na-
ture of the transformations and the data. For instance, in
SimCLR the first transformation ¢; amounts to sampling a
certain image x;, and the second transformation ¢5 amounts
to sampling two data augmentation g1;(x;) and g2;(x;), dif-
ferent for each image. The issue here is that we cannot
observe a change in the index ¢ for the same augmentation
g(z1) and g(z2), as these data points do not exist in the
batch. This means that the representation f can only learn
to distinguish two different images x; that also have two
different augmentations applied to them. Because of the
particular nature of the training data (ImageNet) this is likely
irrelevant since different images x; are unrelated in any case,
so applying transformations does not significantly alter their
statistical relationships.

However, note that this is not always the case. For in-
stance, if SImCLR was applied to a dataset of pre-aligned
faces (for the purpose of learning face recognition), then be-
ing unable to contrast different faces g(z1) and g(z2) under
the same transformation g would make negative pairs far to
easy to discriminate.

A.2. Reduction in variance theorem

A.2.1 Proof of theorem 1

For ease of notation, we will express eq. | as the expected
value of a loss function ¢, which subsumes the weight (w),

contrast (), feature extractor (®) and log-softmax functions:

L= D [€ (=(T),2(1"))] - (2)

The expectation is over pairs of transformations in T =
’fl X ... X ’fM, the space of all compositions of transforma-
tions, which can be applied to the data x. Note that eq. 1
contains a sum over a third transformation (7"') to compute
the softmax’s normalization, which is also subsumed by ¢
in eq. 2 as this third transformation is not essential for the
rest of the proof. We will separate each transformation into
invariant and distinctive parts, T = (T, T") respectively
with TT € 7} and TV € 7'V (see sec. A.1.2). Note that this
separation is merely a notational convenience; the individual
transformations can be applied to the data in any order, with
o(TT, TV) = z(t; o ... o tyr), and each t; belonging to
either 7 or TV. Then, eq. 2 becomes:

L=Eqpi g, ovoveds, [ (z(T", V), 2" (T, T'V))] .

Consider a mini-batch of data sample pairs and
their associated transformation compositions, Byirect

K2K2 K
{TiI,TiV,T/f’T/E/}i:I v sampled as TiI,T’f ~ 77 and

TV, T’ ~ Ty. The batch size is a function of K; =
[[jer Kj and Kv = ][,y Kj, the number of sampled
invariant and distinctive transformations in our method, re-
spectively. The batch size of K? K2 was chosen to allow a
direct comparison. The expected value of the loss over this
batch is then the simple empirical average:

| KiKE
e L [y e Y
£d_K?K‘2/ Z E(m(Tzvn )’x(T’L7T’L )) (3)

Now consider the domain of transformed samples X =
{x(T!, TV) : T € T;,TV € Tv}. Due to the assumed
injectivity of all t € T, we may partition the domain using
one partition X; = {z(T',T}") : T' € 71} per distinctive
transformation T]-V, ie: X = Uf‘/ X;, with X; N X =
(b, V4,4'. The probability distribution of the samples has
density p(T*, T"), and the density in each partition is thus
pi(T") = Kyp(T")dr1¢x,, with § the indicator function.

GDT can then be interpreted as a stratified sampling
method, with one stratum (partition) per pair of distinc-
tive transformations. The domain being sampled by the
expectation in eq. 2 is X? = Uﬁ‘/’K‘/ X; x X, and strati-
fied sampling consists of sampling an equal number of K7
sample pairs from each of the K partitions:

K;,Kr,Kv,Kv

1
(=T 1)), (T, 1)) -

f- L
“4)

Note the subtle difference from eq. 3 in the summation
ranges, and that the same samples and transformations are



reused for both elements of each pair, instead of being sam-
pled independently to fill a mini-batch. To make the follow-
ing derivations easier, note that we can equivalently express
eq. 4 as:

1 Bukv
L=1s > Ly,
V jj/

with ﬁjj' = %? ZzKi’I’KI t (x(TiIa ij)v x(TiI” Tj‘{))‘ We
will first show that this pairwise stratified sampling is an

unbiased estimate of eq. 2:

= 7[(2
V ‘7‘7/

1 Kv,Kv
e > Liy
|4 53

= ﬁ’

where we use the expectation L;;, of the loss function
evaluated on the partition 75’ (corresponding to distinc-
tive transformations with indices j and j’), as L;;; =
I v I v

Errcx, riex, [ (=T T)),=(T",T}))].

Similarly, we can also define each partition’s loss vari-

2 I v I Vv

ance 07, = VTIEQ(J_’T/IG.XJ,,.[Z (z(T1, 1)), (T, T})))].
Then, from eq. 4 we obtain directly

1 Kv,Kv
VI = o 3 VL]
V jj/
Kv,Kv

1 2
- K4 KQ Z Ujj"

As a point of comparison, the variance of the direct sam-
pling estimate is:

X 1
V[Ly] = e ((Eqrr e [C (T, TY), (T, T")
VI
a(T,T'V))] - £?))
Kv,Kv
1 1
“WR \Rp L Prewmiey
[ (a(T", 1)), (T, T})))] — £*
1 1 Kv,Kv
— 2 2 2
K |\ k2 ; (L350 +55) = £
Ky, Ky

1
= W Z (0'32-]-/ + (‘ij/ — ,C)Q)

Ji’

Kv,Kv

1
> — E o2
= K4 K2 79
completing the proof. O

A.3. Additional experimental results

A.3.1 Modality ablation

In table A.1, we provide the results of running our baseline
model (sample-distinctiveness only) within-modally instead
of across modalities and find a sharp drop in performance.
Table A.1: Within vs cross-modal learning. Results on ac-
tion classification performance on HMDB-51 and UCF-101
is shown for finetuning accuracy (Acc) and frozen retrieval
(recall@1) after pretraining on Kinetics-400 for 50 epochs.

HMDB UCF
Acc. R@1 Acc. R@1

Within-modal 37.8 13.9 76.4 28.0
Cross-modal 524 21.8 87.6 54.8

A.3.2 Dataset details

The Kinetics-400 dataset [39] is human action video dataset,
consisting of 240k training videos, with each video repre-
senting one of 400 action classes. After filtering out videos
without audio, we are left with 230k training videos, which
we use for pretraining our model.

HT100M [50] is a large-scale instructional video collec-
tion of 1.2 million Youtube videos, along with automatic
speech recognition transcripts. There are more than 100
million clips (ASR segments) defined in HowTo100M.

HMDB-51 [42] consists of 7K video clips spanning 51
different human activities. HMDB-51 has three train/test
splits of size 5k/2k respectively.

UCF-101 [67] contains 13K videos from 101 human ac-
tion classes, and has three train/test splits of size 11k/2k
respectively.

IG65M [21] is a large-scale weakly supervised dataset
collected from a social media website, consisting of 65M
videos of human action events. We use the all the videos in
the dataset for pretraining.

A.3.3 Preprocessing details

The video inputs are 30 consecutive frames from a randomly
chosen starting point in the video. These frames are resized
such that the shorter side is between 128 and 160, and a cen-
ter crop of size 112 is extracted, with color-jittering applied.
A random horizontal flip is then applied with probability
0.5, and then the inputs’ channels are z-normalized using



mean and standard deviation statistics calculated across each
dataset.

One second of audio is processed as a 1 x 40 x 99 image,
by taking the log-mel bank features with 40 filters and 99
time-frames after random volume jittering between 90% and
110% is applied to raw waveform, similar to [4]. The spec-
trogram is then Z-normalized, as in [41]. Spec-Augment is
then used to apply random frequency masking to the spectro-
gram with maximal blocking width 3 and sampled 1 times.
Similarly, time-masking is applied with maximum width 6
and sampled 1 times.

For the text, we remove stop words from the narrations
as in [50]. For each narration, we take a maximum of 16
consecutive words covering a max duration of 4 seconds as

in [49].

A.3.4 Pretraining details

We use R(2+1)D-18 [72] as the visual encoder f, and
ResNet [32] with 9 layers as the audio encoder f, unless
otherwise noted; both encoders produce a fixed-dimensional
output (512-D) after global spatio-temporal average pool-
ing. For the text encoder, we use the Google News self-
supervised pre-trained word2vec (d=300) embedding [51],
that is linearly projected to 2048D and max-pooled as in
[49]. After the inputs are encoded by their respective modal-
ity encoders, the vectors are then passed through two fully-
connected layers with intermediate size of 512 to produce
256-D embeddings as in [8] which are normalized by their
L2-norm [77]. The embedding is used for computing the
contrastive loss, while for downstream tasks, a linear layer
after the global spatio-temporal average pooling is randomly
initialized. For NCE contrastive learning, the temperature p
is set as 1/0.07. For optimizing these networks, we use SGD.
The SGD weight decay is 10~ and the SGD momentum is
0.9. We use a mini-batch size of 8 on each of our 64 GPUs
giving an effective batch size of 512 for distributed training.
The initial learning rate is set to 0.01 which we linearly scale
with the number of GPUs, after following a gradual warm-up
schedule for the first 10 epochs [24]. For Kinetics, we train
for 100 epochs (3 days), while for HT100M, we train for 40
epochs (3 days).

A.3.5 Ablation experiment details

For the ablations, we only pretrain for 50 epochs on the
Kinetics-400 dataset, and 20 epochs on the HT100M dataset,
since it is a much larger dataset.

For downstream evaluation, we only evaluate on the first
fold of HMDB-51 but found the performance between folds
to be close (within 1%).

A.3.6 Evaluation details

All evaluation code is provided in the Supplementary Mate-
rial.

Video Action Recognition. During training, we take 10
random clips of length 32 frames from each video. For video
clip augmentations, we follow a standard protocol as in
[41]. During evaluation, we uniformly sample 10 clips from
each video, average softmax scores, and predict the class
having the highest mean softmax score. We then measure the
mean video top-1 accuracy across all videos and all official
folds. During training, we use SGD with initial learning rate
0.0025, which we gradually warm up to 2- 1072 in the first 2
epochs. The weight decay is set to 5-10~2 and momentum to
0.9. We use a mini-batch size of 32 and train for 12 epochs
with the learning rate multiplied by 5 - 1072 at 6 and 10
epochs. We compare our GDT pretrained model with both
self-supervised methods, and supervised pretraining, and
report average top-1 accuracies on UCF101 and HMDB-51
action recognition task across three folds in table 4.
Few-shot classification We follow the protocol in [38]
and evaluate our our GDT pretrained network using few-
shot classification on the UCF-101 dataset, and additionally
on HMDB-51. We randomly sample n videos per class from
the train set, average the encoder’s global average pooled
features from ten clips per training sample and measure
classification accuracy performance on the validation set
using a k-nearest neighbor classifier, with k set to 1.

Video Retrieval. We follow the standard protocol as out-
lined in [80]. We use the split 1 of UCF101, and additionally
HMDB-51. We uniformly sample 10 clips per video, and
average the max-pooled features after the last residual block
for each clip per video. We use these averaged features from
the validation set to query the videos in the training set. The
cosine distance of representations between the query clip
and all clips in the training set are computed. When the class
of a test clip appears in the classes of k nearest training clips,
it is considered to be correctly predicted. We report accura-
cies for k£ = 1, 5, 20 and compare with other self-supervised
methods on UCF101 and HMDB-51 in table 3.

PCA t-SNE

Fig. A.1: Feature visualizations with PCA and t-SNE on 30
videos of a single, random class of HMDB-51. For each
video, we sample 10 temporal clips and encode video-ID
with color. Embeddings are generated from our time-shift
distinct model (Tab.1 (1)).



A.3.7 Additional Qualitative analysis

In fig. A.1, we present a PCA and t-SNE [73] plots of the
features obtained by our model (DS-d, TR-d, TS-d) (Tab. 1,
row (1)). We observe that even comparing to videos of the
same action category, the individual clips are well separated,
showing that the model is learning to distinguish between
different time intervals.
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Abstract

The quality of the image representations obtained from
self-supervised learning depends strongly on the type of
data augmentations used in the learning formulation. Re-
cent papers have ported these methods from still images
to videos and found that leveraging both audio and video
signals yields strong gains; however, they did not find that
spatial augmentations such as cropping, which are very im-
portant for still images, work as well for videos. In this
paper, we improve these formulations in two ways unique
to the spatio-temporal aspect of videos. First, for space, we
show that spatial augmentations such as cropping do work
well for videos too, but that previous implementations, due
to the high processing and memory cost, could not do this
at a scale sufficient for it to work well. To address this is-
sue, we first introduce Feature Crop, a method to simulate
such augmentations much more efficiently directly in fea-
ture space. Second, we show that as opposed to naive av-
erage pooling, the use of transformer-based attention im-
proves performance significantly, and is well suited for pro-
cessing feature crops. Combining both of our discoveries
into a new method, Space-Time Crop & Attend (STiCA)
we achieve state-of-the-art performance across multiple
video-representation learning benchmarks. In particular,
we achieve new state-of-the-art accuracies of 67.0% on
HMDB-51 and 93.1% on UCF-101 when pre-training on
Kinetics-400. Code and pretrained models are available'.

1. Introduction

Visual representations have evolved significantly in the
last two decades. The first generation of representations

*Equal contribution.
Thttps://github.com/facebookresearch/GDT
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Figure 1: HMDB-51 accuracy vs epoch. Our method,
STiCA, combines space-time crops in feature space with
self-attention of time in latent space. This yields significant
benefits not only in performance but also in speed compared
to cropping in input space using two RGB crops, or simply
using the default cross-modal only loss. Compared to recent
state-of-the-art cross-modal self-supervised learning meth-
ods (XDC [6], GDT [107], AVID-CMA [98], SeLaVi [9])
pre-trained on Kinetics-400 [69] STiCA is able to achieve
significantly better results in fewer epochs.

comprises algorithms such as SIFT [87] and HOG [30] that
were designed manually. The second generation comprises
representations learned from data by using deep neural net-
works and manual supervision [31, 59, 76]. We are now
transitioning to the third generation, where representations
are learned from data without using any manual annotations
by means of self-supervision. Current self-supervised rep-



resentations, obtained from methods such as MoCo [57],
SimCLR [24] or SWAV [20], convincingly outperform su-
pervised ones on downstream tasks such as image classi-
fication, segmentation and object detection. Furthermore,
most of these methods are based on noise-contrastive in-
stance discrimination, which was proposed in ExemplarC-
NNs [39] and put in its current form in [143] and [102].
The idea is to learn representations that are invariant to ir-
relevant factors of variations, modelled by strong augmen-
tations such as image cropping, while remaining distinctive
for the identity of the image.

Noise-contrastive learning is of course not limited to still
images. In particular, a number of recent approaches [54,

, 98, ] have used noise-contrastive formulations to
learn visual or audio-visual representations. However, these
methods are not as well developed as their counterparts for
still images, with current state-of-the-art methods [54, ]
still lagging behind their supervised counterparts.

In this paper, we identify two areas in which current
video representation learning formulations are lacking and
improve on them, thus significantly improving upon the cur-
rent state of the art in this area.

The first shortcoming is the lack of a sufficient encoding
of spatial invariances. For still images, learning spatial
invariances has been shown to be one of the most impor-
tant factors for performance [20, 24]. Almost all methods
achieve some form of spatial invariance simply by apply-
ing different spatial augmentations to the images in different
epochs of training. However, learning spatial invariances in
this manner requires a slow training process that lasts for
many epochs (~800). Authors have suggested that pack-
ing several augmentations of the same image in a single
data batch is more effective as it provides a much stronger
and more direct incentive for the network to learn invari-
ances [20].

For videos, both strategies are less feasible. Training a
model for 200 epochs on Kinetics-400 [69] already requires
around 1.5K GPU hours on recent Nvidia V100 architec-
tures, and with recent datasets such as IG65M [45] and
HowTo100M [95] only a handful of epochs can realistically
be completed. On the other hand, including multiple aug-
mentations of the same video in a batch rapidly exhausts the
memory of GPUs. Since batch sizes per GPU are already
in the single digits due to the size of video data, includ-
ing several augmentations is unfeasible. This is particular
detrimental for recent contrastive learning approaches such
as [24, 58], where reducing the batch size means reducing
the pool of negative contrastive samples.

In order to solve this problem, we propose to move spa-
tial augmentations to the feature space, in a manner specifi-
cally tailored to contrastive learning. Instead of extracting a
large number R of different augmentations in the input RGB
space, we extract only two of them, apply the trunk of the

neural network to extract corresponding features, and then
extract R/2 more augmentations directly in feature space.
In this way, one needs to evaluate the slow and memory
taxing feature extraction part of the network only twice, re-
gardless of the number of augmentations that are produced.
We show that this feature-level augmentation significantly
improves representation learning performance.

The second challenge that we tackle is how to best en-
code temporal information in self-supervised video rep-
resentation learning. Currently, most self-supervised video
representation learning approaches use 3D-CNNs [21, ,

, ] that compute convolutions across space and time,
but the final representation is generated by naive global av-
erage pooling over space and time, crucially discarding tem-
poral ordering.

In order to address this shortcoming, in this work we
propose to use a contextualized pooling function based on
the transformer architecture [136] for both self-supervised
pretraining and supervised finetuning. The intuition is that,
via multi-head self-attention, the transformer can capture
temporal dependencies much better than average pooling,
especially for longer inputs. Transformers can also bene-
fit from our feature-level crops, as the latter resemble the
common approach of randomly masking the inputs to the
transformer [62]. Experimental results show that this modi-
fication improves the performance of the learned video rep-
resentations substantially, and is cumulative with the benefit
of feature crops, at about the same cost of average pooling.

We combine both of our proposed improvements into a
new self-supervised learning approach: Space-Time Atten-
tion and Cropping (STiCA). To summarize, with STICA we
make the following three main contributions:

* We demonstrate the benefits of stronger spatial invari-
ances in self-supervised video representation learning
for the first time and we propose feature-level augmen-
tation to implement the latter efficiently.

* We propose to use transformers to model time more
effectively in self-supervised video representations, re-
placing average as the pooling function.

* We demonstrate strong performance gains by using the
two techniques and obtain state-of-the-art performance
on two standard benchmarks (67.0% on HMDB-51
and 93.1% on UCF-101).

2. Related Works

Self-supervised Image Representation Learning. Self-
supervised learning uses pretext tasks to automatically and
easily generate differentiable learning signals from the data
itself in order to train convolutional neural networks. A
variety of pretext tasks have been proposed such as col-
orization [ 149, ], predicting artificial rotations [46], in-



painting [ 106], spatial context [35, ], and clustering fea-
tures [11, 18, 19, 20, 64, 83]. Recently, contrastive meth-
ods [50, 51] have proven to be particularly effective at learn-

ing transferable image representations [13, 24, 49, 57, 96,

) ]'

Self-supervised Video Representation Learning. For
videos, pretext tasks often seek to leverage the temporal
dimension to learn representations. Such tasks include

predicting clip and sequence order [79, 97, ], future
events [52, 53], the arrow of time [14 1], 3D geometric trans-
formations [05, 71], playback speed [14, 40, 63, ], or

motion statistics [137].

Multi-Modal Learning. The co-occurrence and syn-
chronicity of multiple modalities from videos have been
used to learn visual representations from both audio-
video [0, 7, 9, 74, 91, 98, s ], and speech-video [5,
, 85, 93, 94, , , , s ] data. Multi-
modal representation learning has several practical appli-
cations: lip reading [3, 26, 27], audio-visual source separa-
tion and localization [2, 4, 8, 56, , ], speech recogni-
tion [1, ], efficient inference [43, 75], egocentric action
recognition [70] and audio-visual navigation [22].

Data Augmentations. Data augmentation has proven to
be useful in training deep learning models in many domains,
from vision [28, 29, ] to speech [104]. Data transfor-
mations are the foundation of most self-supervised works,
and there has been early attempts to even learn the opti-
mal distribution of transformations [ 16, 29]. Particularly for
contrastive learning, the choice of data transformations has
been shown to be particularly important to learn desirable
invariances and equivariances [96, , s 1.

Transformations in Feature-Space. Some works have
proposed forms of augmentation in feature-space, by adding
noise and linear transformations [130], and by associating
samples to prototypes in feature-space [78]. These augmen-
tations do not correspond to interpretable geometric opera-
tions, however. Crops in feature-space are commonly used
in supervised detection pipelines, such as Faster R-CNN
and region-based architectures [116], and in earlier detec-
tors based on manually-engineered features [30]. How-
ever, the objective of these transformations is to enumerate
a space of outputs (e.g. bounding box predictions) for su-
pervised prediction. In self-supervised learning, while [66]
uses feature mixing to create harder negatives for con-
trastive learning, we are instead interested in using feature
crop augmentation to achieve spatial invariance.

Temporal Modeling. Videos extend images by adding a
temporal dimension. Therefore, there has been a large fam-
ily of research that has looked into how to model tempo-
ral information in videos. Early works incorporated tem-
poral information via average pooling of frame/clip-level

features [48, 68, ], while later work used 3D convolu-
tion neural networks [133, , ] and recurrent-neural
networks [37]. Other approaches leverage long-term tem-
poral convolutions [135], self-attention [140], relation net-
works [153], multi-scale temporal convolutions [61], or op-
tical flow in a two stream network [120].

Transformers in Vision. With the success of the trans-
former architecture [136] in natural language process-
ing [62], transformers are being used in various vision
domains such as image representation learning [23, 32,

s , ], image generation [105], object detec-
tion [17, 86], few-shot learning [36], video action recog-
nition [15, 47, R ], video question-answering [67],
image-text [84, 88, s ) | and video-text [42, 73,
] representation learning.

s b} )

3. Method

Our goal is to learn a general-purpose data representa-
tion ® : X — Z = RP that maps data = € X to feature
vectors z = ®(x). In the supervised setting, representa-
tions are learned end-to-end as components of larger sys-
tems that solve certain tasks of interest, such as image or
video classification, under the assumption that supervision
is available to drive the learning process. When supervision
is not available, representations can still be learned via self-
supervision by means of suitable pretext tasks. Among the
latter, noise contrastive learning is one of the most popu-
lar and successful ones [24, ]. We summarize this back-
ground next and discuss our extensions in the following sec-
tions.

3.1. Background: Multi-modal contrastive learning

The idea is to train the representation ® to identify data
points up to the addition of noise or, more generally, the ap-
plication of certain nuisance transformations. To this end,
let g : X — X be transformations sampled in a set G of
possible nuisances (for example random image crops). Let
sim(z’, z’") be a similarity function comparing representa-
tions z’ and z”, such as the cosine similarity:

iy o (2',2")
) = e

Consider a dataset or batch B = {1, ..., xx } of data sam-
ples. Slightly modifying [24], for each sample x;, draw a
set of random nuisance transformations {gq; }1<;<n and let
Zai = P(gai(x;)) be the representations of the transformed
samples. Likewise, consider a second set 3 of transfor-
mations {gg; }1<i<n. The noise contrastive loss (NCE) is
given by:

% sim(zai,28:)

N
1 e
L(a,p) = N Zlog TN T sim(zanzs)) M
i=1 J

_1€7
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Figure 2: Approach Overview. We present a self-supervised approach that learns video representations without labels.
(Top) Prior work in video representation learning did not capture spatial invariances, as taking many crops of the input (at
varying locations and scales), quickly gets expensive in both compute and memory. (Bottom) The proposed method generates
a large variety of views from only two RGB-crops by cropping in latent space and is particularly tailored to self-supervised
contrastive learning. The latent crops are essentially masked features, which are then further processed by a light-weight
temporal transformer. Compared to global pooling, this allows our method to further capture the rich temporal signal.

where 7 > 0 is a temperature parameter. This loss pulls
together the representations of samples that only differ by
the transformation while pushing apart the others. Note that
this definition is not symmetric in the two arguments « and
B (.e., L(a,B) # L(B, ). Note also that we can introduce
any number of transformation sets «, (3,7, . . . and, for each
pair, we can obtain a different variant of eq. (1).

Recently, works such as [107] have ported this technique
to the video domain by contrasting modalities. Each video
x = (v,a) consists of a visual component v and an au-
dio component a. One consider two sets of transformations
gv, extracting and augmenting the visual component, and
Ja, €xtracting and augmenting the audio component. We
still write ® (g, (x)) for the feature computed for either vi-
sual and audio components, but the symbol means that a
modality-specific neural network is applied as needed.’

With this, we can derive three variants of eq. (1), involv-
ing mixed visual-audio and homogeneous visual-visual and
audio-audio comparisons. Their combinations are:

)\7)(1‘6(@; CL) + )\(wﬁ(aa 1)) + >\m;£(vla UZ) + )\aa[f(ah a2)-

(2)
where Ayq, Aqus Apy and A, are non-negative mixing
weights.

Challenge 1: Encoding within-modality invariance.
While all terms in 2 code for desirable invariances of the
representation, several recent papers [91, 98, ] have
found that the mixed term \,, is far more important than
the other two; in fact, performance degrades if one sets

21n other words, ® = (®y, Pg) is really a pair of networks, producing
embedding vectors 2z, that are compatible regardless of the modality o €

{v,a}.

Aaa, Avp # 0, meaning that within-modal invariances are
not successfully leveraged. Our hypothesis is that within-
modality invariance can be beneficial, and that these early
negative results are due to the fact that current learning for-
mulations are ineffective at capitalizing on this signal.

As suggested in Sec. 1, the fact that video data is large
means that the batch size used in learning must be small. As
a consequence, a batch can contain only a very small num-
ber of different augmentations of the same video sample.
In current multi-modal learning formulations, each video is
already transformed twice in order to extract video and au-
dio components, so cross-modal invariance is learned well.
However, the downside is that there is no space left in the
batch for multiple visual or audio augmentations. Thus,
within-modality invariance is learned only indirectly — in
particular, as noted in Sec. 1, two different visual or audio
augmentations of the same video are visited by the model
only after an entire training epoch. Next, we address this is-
sue by making it feasible to extract several within-modality
transformations in the same batch even for video data.

3.2. Efficient spatial cropping for augmentation

It has been found that self-supervised learning bene-
fits from, and requires more and stronger augmentations
compared to the supervised counterpart for optimal perfor-
mance [24]. In particular, several papers [10, 20, 24] have
suggested that, in the case of still images, the most im-
portant type of augmentation is cropping. Namely, given
an RGB image * € R3*#*W yith three channels and
height and width H and W respectively, a crop is given by
aboX B = (Tmin, Tmax; Ymin, Ymax ). The image tensor is first



cropped as:

CB(T) = TL:, yoireymas, Zainima] Q)

where the : symbol is used to denote an index range. The
cropped tensor is then resized to a tensor & = g(x) =
Ruyw, (Cp(z)) € R>*HoxWo with a given height and
width Hy x Wy. In practice, Rp,w, may also apply ad-
ditional augmentations such as color jittering, as detailed in
the experiments.

As for the visual part v € of a video, the
situation is similar, except that the video also contains an
additional temporal dimension 7'. To avoid extreme spatial
jittering and keep objects aligned, a spatial crop is usually
taken at the same location in the input space throughout the
whole temporal dimension, so we consider the tube B =
(xminy Tmaxs Ymin, Ymax, tmin: tmax) and define v = 9o (U) =
Ru,w, (Cp(v)) € R¥*ToxHoxWo by extending (3) in the
obvious way.

The deep neural network z = ®(¥) mapping v to its
corresponding code z is fed with tensors with two spa-
tial dimensions and a temporal one. Such networks, often
called 3D for this reason, include R3D [55], S3D [145] and
R(2+1)D [134]. As customary in deep convolutional neu-
ral networks, they first produce an intermediate tensor with
lower space-time resolution and then pool the latter to ob-
tain a single code vector for the entire video. We explicitly
break this down into three functions

R3><T><H><W

®(v) = (ProPso¥)(v) “4)

Here, the first function is a 3D convolutional neural network
V() € RPXTxHixWi producing a tensor with reduced
resolution 77 < Ty, Hy < Hy, W1 < Wy. The operators
Ps and P; collapse, respectively, spatial and time dimen-
sions via average pooling.

Now consider implementing term £(vy, v2) in 2. In this
case, one samples from each video x; two different space-
time crops g.,i(x;) and g.,:(x;), each corresponding to
random tubes B; and Bj respectively. The tubes are not
sampled entirely independently, however, as they have the
same temporal extent (£min, tmax)-

Naive multiple spatial cropping In practice, [20, 24, 82,
] show that taking multiple image crops improves self-
supervised image representations. We can achieve a similar
effect for videos by summing losses £(vq, vg) for sets of
visual transformations v, 7 vg, obtained by sampling mul-
tiple space-time tubes for each video, but this is practically
difficult, both due to the large memory footprint and the
compute overhead of the slow 3D CNN for each crop.

The Multi-Crop approach introduced by SwWAV [20] in
the image domain combined with our asymmetric con-
trastive formulation (1) can partially reduce the complex-
ity. For Multi-Crop, we consider three crop sizes @ €

{L1,L2,S} where L; and Lo stands for large and S for
small. The use of a small crop allows to reduce the memory
consumption when the representation ¢ is computed. We
then have losses:

L(vr,,vL,) + L(vLy,vr,) + L(ve,, vs) + L(vr,, vs).

While operating on small videos saves some computation,
in practice this approach is insufficient to allow using more
than a handful of crops in total.

Efficient cropping in feature space. As illustrated
in Fig. 2, a much more efficient alternative to cropping the
input video is to crop intermediate features.

To do so, we first apply the trunk ¥ of the representation
to an input-space crop of the visual component of the video
v = Ry,w,(Cp(v)) € RPXTrxXHixWi_ Then we can ef-
ficiently construct a new view of this data by applying the
Feature Crop C'z directly on each intermediate representa-
tion, yielding

v = 07 (\Ij(/i})) = ‘l}(ﬁ)[tmin:tmax; Ymin *Ymax s C17min:ftmax] (5)

Since the operator C'5 is lightweight, it can be used to com-
pute several such random views efficiently; by comparison,
cropping the input RGB images requires recomputing the
trunk ¥ multiple times.

In practice, given an input video v, we generate the
following views. First, we apply two crops in RGB
space, producing two large crops L; and Lo. Then,
for each of those, we use the operator (5) to gener-
ate m medium-sized and n small-sized crops T; =
{MiL;,... , My, L;;S1L;,...,S,L;}. We define an over-
all within-modality loss by summing losses for each pairs
of views in 7 with exception of pairs where both crops are
small:

Lyy = Zﬁ(vmvﬁ) + L(vg,vy), where
a,B
(@,8) € (Ti x T2) = (S1 X S2)  (6)

Note that there are 2((m -+n)? —n?) terms in this loss. This
is a far greater number of comparison than afforded by the
two initial input-space RGB crops.

Receptive Field of Feature Crops and Preventing Short-
cut Learning. Noise contrastive learning works better
when you can reduce the mutual information between the
input pairs [132] as its harder for the network to cheat. This
can be achieved by taking multiple spatial crops of images
in the input space and independently applying different aug-
mentations, such as color jittering and Gaussian blurring, to
the cropped inputs. However, as mentioned above, taking
more than 2 crops in input space is both memory and com-
putationally infeasible for multi-modal video data. Crops in



feature space, on the other hand, allows us to take multiple
crops for noise contrastive learning. However, since CNNs
have large receptive fields that easily cover the full frame,
there may be shortcut learning with feature crops as infor-
mation may leak between the crops from same feature map.
To alleviate this, we take feature crops from two originally
augmented video clips, allowing us to make NCE compar-
isons across modalities and individual augmentations (such
as color jitter), leading to a beneficial reduction in mutual
information. Furthermore, while the theoretical receptive
fields of units in later layers are indeed very large, units
tend to be sensitive to an effective area which is significantly
smaller than the theoretical receptive field [90, ], further
reducing the mutual information between inputs for noise
contrastive learning.

3.3. Temporal modelling with transformers

We now discuss our second improvement: better mod-
elling of time.

Challenge 2: Modelling time better. Contrary to spatial
invariance, models should not be fully invariant to time as
the latter can encode causality and with it semantics: a video
of someone starting a fire is very different from its reversed
version, in which someone extinguishes it. In standard 3D
networks, features in the trunk are sensitive to the temporal
order, but this information is lost in the final stage, where
temporal averaging is applied. We argue that the value of
the lost information increases with the length of the video,
and that this information can be leveraged by switching to a
different pooling function.

Temporal transformer. We propose to tackle this issue
by replacing average pooling in time P; in eq. (4) with a
transformer Pyanss. Transformers [136] have been shown
effective for representing sequential inputs in the NLP do-
main [62, 81, R ].

After spatial averaging, the output h = Ps(U(v)) €
RP T of the network has one feature vector per time step,
and is thus amenable to processing by a transformer. The
feature h, which differs in latent time-dimension size from
its uncropped variant can be seen as masking the trans-
former’s attention. Masking attention has been used in
transformer encoder-decoder training to prevent the model
from cheating [33] and encourage it to leverage information
from the context.

We use a shallow and light-weight transformer on top
of our feature cropping procedure, which we show to be
sufficient to reap the benefit of better temporal modelling
incurring only a very small computational cost. We use 2-
layers and 4 self-attention heads and provide further details
on the transformer architecture in the Appendix.

3.4. Overall loss

Our combined model, STiCA, better learns space-time
invariances and relationships by cropping in space-time
and leveraging temporal attention with a transformer. For
training, we sample N videos in a batch and, for each
of them, compute two ‘large’ visual crops in RGB space,
2(n + m) small and medium feature crops (Sec. 3.2), and
an audio augmentation a. With those, the overall objec-
tive is obtained by summing the within-modality loss L,
from eq. (6) to the cross modality losses:

L= )\’U’UL’U’U + )\vaLvm (7)
where L,,=L(vr,,a)+L(vp,,a)+L(a,vr,)+L(a,vL,).

4. Experiments

We first describe the datasets (Sec. 4.1) and implemen-
tation details (Sec. 4.2) for pretraining. In Sec. 4.3, we de-
scribe the downstream tasks for evaluating the representa-
tion obtained from self-supervised learning. In Sec. 4.4, we
ablate the various components of our method, and the im-
portance of temporal context and multi-modality in Sec. 4.5.
Lastly, in Sec. 4.6, we compare with prior work in video and
multi-modal representation learning.

4.1. Data

We pretrain on the Kinetics-400 dataset [69], which con-
tains about 230K training videos and 13K validation videos
belonging to 400 action classes. This dataset is the “Ima-
geNet” for video representation learning due to its moderate
size and being public, allowing for broad access and com-
parability. After pretraining, we evaluate using video ac-
tion retrieval and action recognition on HMDB-51 [77] and
UCF-101 [121]. HMDB-51 [77] consists of 7K video clips
spanning 51 different human activities. HMDB-51 has three
train/test splits of size SK/2K respectively. UCF-101 [121]
contains 13K videos from 101 human action classes, and
has three train/test splits of size 11K/2K respectively.

4.2. Implementation details

Following [107], we use the R(2+1)-18 [134] network
as visual encoder and ResNet [59] with 9 layers as audio
encoder. We train for 100 epochs and use 30 frames with
temporal stride of 1 at sampling rate of 30fps at spatial res-
olution of 112 x 112 as input. In our ablations, we evaluate
the learned representation by finetuning the visual encoder
on fold 1 of the HMDB-51 [77] action recognition dataset.
Further implementation details are given in the Appendix.

4.3. Downstream tasks

Video action retrieval. For video retrieval, we follow the
standard protocol described in [146]. We use the split 1



Table 1: Comparison experiments and ablations. We compare key parameters and settings of our proposed method. We

report results model performance at epoch 100 and with 30 frames and without transformer unless noted otherwise.

[-Spatial size

[-Temporal size Acc.

Cropping-strategy Resolution GPU-h/epoch  Acc. i 5 i S

Default 1x1122 17.3 54.0 2

Two RGB Crops 2% 1122 203 58.6 O o

Multi RGB Crops [20] 2x 1122 + 1 x 962 46.7 59.3 5 5 :

Ours (Feature Crop) 2% 1122 + latent 29.3 60.4 Ix67 2x4” 2x3  1x2 58.4
2x62 4x4%2 2x3 1x2 60.4

(a) Cropping yields benefits but requires more compute. Our feature crops are
]. Note that all models are trained for 100 epochs.

efficient and outperform [

(b) Feature crops. Heavier augmentations in latent (/)
space and time lead to better representations.

Pretraining Finetuning Acc Transf.? Layers Params GFLOPS Acc. Cspace Ctime T? Acc.
Pt Pt 54.0 X 0 37.2M T 54.0 X X X 54.0
Pt Phrranst 54.6 X 0 42.8M 80.0 57.3 v X X 59.9
Prranst Pt 52.1 v 2 42.4M 77.8 60.3 v v X 60.4
Phrranst Phranst 60.3 v 4 47.T™M 77.8 58.3 v v v 62.0

(¢) Pooling. Compared to Average-
Pooling (P:), Transformer-based pool-
ing (Prranst) gives stronger performance.

(d) Architecture.

trainable parameters.

Using up to two trans-
former layers gives gains, not due to more

(e) Combined gains. Feature crop in space
Cspace and time Cliime and transformer
pooling (T) add cumulative benefits.

Method RGB-Crops Multi-scale RGB-Crops Feature Crops
Ix  2x  4x* 2x112+1x96 2x112+2x96 2x112+6x96* (1x7, 1x4) (2x6 + 4x4, 2x3 + 1x2)
GPU-h/epoch 17.3 29.3 60.0 46.7 533 100.7 29.3 30.0

(f) Speed. Input-crops are slow: * methods require reducing batch sizes (see Appendix) as activations do not fit on GPU.

of UCF-101, and additionally HMDB-51. We uniformly
sample 10 clips per video, max pool and then average the
features after the last residual block for each clip per video.
We use these averaged features from the validation set to
query the videos in the training set. If the class of a retrieved
video matches the class of query video, we count it as a
match. We measure recall at k=1, 5, 20.

Video action recognition. As is standard in the literature,
we evaluate our pretrained representations by finetuning our
visual backbone on the video action recognition task on
HMDB-51 and UCF-101 datasets. We closely follow the
finetuning schedule of GDT [107]. During finetuning, we
use SGD with initial learning rate 0.0025, which we gradu-
ally warm up to 0.02 in the first 2 epochs The weight decay
is set to 0.005 and momentum to 0.9. We use a mini-batch
size of 32 and train for 12 epochs with the learning rate
multiplied by 0.05 at 6 and 10 epochs. For training, we
randomly sample 1s clips per video, and during evaluation,
we uniformly sample 10 clips from each video and apply
3-crop evaluation as in [41].

4.4. Comparison experiments and ablations

Cropping augmentation. In Tab. la, we ablate the im-
portance of spatial augmentation in learning video represen-
tations. We compare our proposed Feature Crop augmenta-
tion, C'z, to the recently proposed Multi-Crop augmentation
strategy [20] and other baseline approaches. Multi-Crop has
proven to be effective in image self-supervised learning be-

cause it forces the model to learn local-to-global associa-
tions, by explicitly enforcing invariance between features of
large-crops and those of multiple small crops. While effec-
tive, it can be particularly computationally intensive, which,
with our hardware, limits its use to only two large crops and
one small crop when applied to video representation learn-
ing. Our proposed Feature Crop is not only more efficient,
but outperforms Multi-Crop by 1.1% when the learned rep-
resentations is applied to action classification in HMDB-51.
By cropping in feature space, we achieve a similar effect but
can increase the number of small crops from 1 to 6 without
increasing compute time.

Feature crop parameters. In Tab. 1b, we study the pa-
rameters of our Feature Cropping approach. We find that
even our basic variant, which does one medium 6 x 6 crop
and two 4 x 4 small crops (by cropping a 7 x 7 tensor) in-
creases performance by nearly 6%, which is a relative im-
provement of more than 10%. If we further increase the
number of crops in time and space, the performance in-
creases from 59.9% to 60.4%.

Pooling Function. In Tab. lc, we test temporal aggrega-
tion. We find that using a shallow transformer significantly
outperforms simple average pooling by more than 5%; how-
ever, transformer pooling must be used both for pre-training
the representation and for finetuning it on the target dataset.

Transformer architecture. In Tab. 1d, we test variants
of the transformer architecture, including ablating iit alto-



Frames Accuracy Ava Awy F. Crop? Acc.
Pretrain Finetune ~ GAP Transf.

0 1 No 43.3

30 30 54.0 60.3 1 0 No 54.0

60 60 62.4 66.1 05 05 No 58.6

90 90 58.0 66.9 0.5 05 Yes 60.3

Table 3: Loss. Com-
bining within-modal and
cross-modal loss with
Feature-crops is key.

Table 2: Temporal context.
We report results with dif-
ferent number of frames on
finetuning accuracy.

gether. We find that temporal modelling as measured by
downstream performance peaks at two layers, likely due to
optimization difficulties of deeper transformers with SGD.
We also compare to a model with approximately the same
number of parameters as our 2-layer transformer (achieved
by increasing the networks’ last block’s hidden dimension
to 640). We find that the transformer still yields gains of
3%, indicating that it not the number of parameters but the
modelling of time that is crucial for strong performance.

Combining Feature Crops and Transformer Pooling.
In Tab. le, we show that combining Feature Crops in space
and time, and then adding transformer pooling yield addi-
tive gains, with the best result obtained by combining all ef-
fects (which corresponds to STiCA). This shows that space-
time augmentations and transformer pooling are comple-
mentary.

Cropping efficiency. In Tab. 1f, we compare train-
ing times (normalized to GPUsxhours) for Kinetics-400
epochs for the various spatial crops considered. We make
two observations: First, the compute cost of RGB crops
scales proportionally to their number because a full forward
pass is required for each crop. Second, using a larger num-
ber of RGB crops eventually requires to decrease the batch
size, which increases significantly the training time. In con-
trast, the cost of Feature Crop remains roughly constant no
matter the number of crops.

4.5. Temporal Context and Multi-modality

Length of temporal context. In Tab. 2, we show the im-
portance of leveraging longer context to improve video self-
supervised representation learning. Similar to the super-
vised regime [135, ], we observe improved accuracy as
we increase the number of frames used during pretraining
and fine-tuning. More importantly, the transformer pooling
layer is better able to exploit this additional context, outper-
forming average pooling by over 4% for all frame lengths.
Notably, there is a drop in performance when using GAP
for extremely long contexts (90 frames).

Loss. Lastly, in Tab. 3, we study the effect of combining
multi-modal learning signals with our contributions. In the

3Concurrent work.

Method Architecture Dataset Top-1 Acc%
HMDB UCF
Supervised R(2+1)D-18  K-400 704 95.0
Multisensory [103] R3D-18 K-400 - 82.1
SeLaVi [9] R(2+1)D-18  K-400 47.1 83.1
TempTrans [63] R3D-18 K-400 49.8 79.3
PEMT [80] SlowFast K-400 - 85.2
XDC [6] R(2+1)D-18  K-400 52.6  86.2
MemDPC [53] R-2D3D K-400 54.5 86.1
AVSF [144] AVSF K-400 546 870
AVTS [74] MC3-18 K-400 569 858
CPD [85] R3D-50 K-400 57.7 88.7
AVID [98] R(2+1)D-18  K-400 60.8 87.5
GDT [107] R(2+1)D-18  K-400 60.0 893
ACC[91] R3D-18 K-400 61.8  90.2
GLCM [92] R3D-18 K-400 619 91.2
CoCLR [54] S3D K-400 62.9  90.6
CVLR [113]3 R3D-50 K-400 66.7 922
Ours: STiCA R(2+1)D-18  K-400 67.0 93.1
L3-Net [7] VGG-16 AS 40.2 72.3
SeLaVi [9] RQ2+1)D-18  VGGS 53.1 87.7
Speech2Act [99] S3D-G Movie 58. -
DynamoNet [34] ResNext101 YSM 58.6 87.3
MIL-NCE [94] S3D HT 61.0 913
AVTS [74] MC3-18 AS 61.6 89.0
AVID [98] RQ2+1)D-18  AS 64.7 91.5
Textual [ ] S3D-G WVT-70M  65.3 90.3
GDT [107] R(2+1)D-18  AS 66.1 92.5
ACC [91] R(2+1)D-18  AS 67.2 93.5
ELo [111] RQ2+1)D-50 Y2M 674  93.8
XDC [6] R2+1)D-18  1G65M 68.9 95.5
GDT [ ] R(2+1)D-18 IG65M 72.8 95.2
MMV [5] TSM-50x2 AS+HT 75.0  95.2

Table 4: Comparison to SoTA for action recognition.
Dashed line indicates position of our Kinetics-400 model
in comparison to models trained with many more videos.
We follow standard evaluation protocol across 3-folds. For
linear evaluation results see Tab. 7.

first row, we have the baseline of naively extending Sim-
CLR [24] to the video domain, by learning invariances to
spatial augmentations of two large-crops. Compared to this,
the cross-modal baseline (row 2) already achieves gains of
more than 10%. While adding a within-modal invariance
adds another 4.6%, we find that the best performance is ob-
tained with our feature crops, adding another 1.7% in per-
formance and showing its unique potential to supplement
cross-modal signals.

4.6. Comparison with the state of the art

Video Action Recognition. In Tab. 4, we evaluate our
pretraining approach on the standard HMDB-51 and UCF-
101 action recognition benchmarks after pretraining on the
Kinetics-400 dataset. Firstly, we find our model outper-
forming the similar NCE-based GDT [107] model by 7.0%
and 3.8% on HMDB-51 and UCF-101. We further sig-



UCF HMDB

Recall @ 1 5 20 1 5 20
VCOP [146] 141 303 51.1 76 229 488
VCP [89] 18.6 336 535 76 244 536
MemDPC [53] 202 404 64.7 7.7 257 577
VSP [25] 246 419 627 103 26,6 768
SeLaVi [9] 520 68.6 845 248 476 755
CoCLR [54] 559 708 825 26.1 458 69.7
GDT [107] 574 734 88.1 254 514 750

Ours: STICA 59.1 76.2 88.1 26.3 49.2 764

Table 5: Comparison to SoTA for retrieval. Nearest
neighbor action retrieval performance @k = {1, 5, 20}.

nificantly outperform the current state-of-the art methods
CoCLR [54] by 4.1% and 2.5% and CVLR [113] by 2.6%
and 1.0% on HMDB-51 and UCF-101, respectively. Even
more impressively, our approach is able to out-perform
most prior works that use AudioSet [44] pre-training, which
is around 10 x larger than Kinetics-400. This shows how ef-
fective and data-efficient our approach is, significantly clos-
ing the gap to supervised learning.

Video Action Retrieval. Lastly, we directly evaluate the
transfer-ability of our pretrained representations on action
retrieval on UCF-101 and HMDB-51. Similarly to full fine-
tuning setting, we outperform all prior works.

5. Conclusion

We have address two shortcomings of current self-
supervised video representation learning: insufficient spa-
tial invariance, especially compared to the image domain,
and inadequate modelling of time. We have introduced
STiCA, improving spatial invariance at very little cost by
implementing cropping in feature space, and improving
modelling of time via a shallow transformer. Our method
brings self-supervised video representation learning one
step closer to the supervised case, providing significant
gains w.r.t. the state-of-the-art.
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6. Appendix
6.1. Implementation Details

While videos in Kinetics are 10 seconds long, we ran-
domly sample either 1-second (30 frames), or 2-second (60
frames) clips from the 30fps videos. For the R(2+1)-D-18
visual encoder, the dimensions of the resb feature map be-
fore spatial pooling is 512 x 7" x 7 x 7 for a 112 x 112
resolution video, where 1" = 4 for 30-frame (1 second) in-
put, and T' = 8 for 60-frame (2 second) input. After spatial
pooling, we use either average pooling or a transformer as
the temporal pooling function for the visual encoder, but al-
ways use average pooling for the audio encoder. The trans-
former’s layers dimensionality are set to 512-D. Both en-
coders produce a fixed-dimensional representation vectors
after temporal aggregation (512-D). Both vectors are then
passed through two fully-connected layers with intermedi-
ate size of 512 to produce 256-D embedding vectors z as
in [107]. We use these embeddings in our loss eq. (7) and
train our model for 100 epochs. For the visual component
of the video, we use a 30 frame RGB clip as input, at 30 fps
covering 1 second. The video clip has a spatial resolution
of 112 x 112 pixels. For input data augmentation, we ap-
ply random crops, horizontal flips, Gaussian blur and color
jittering, all clip-wise consistent, following the protocol of
SimCLR [24], and we ablate multiple settings for spatial
and temporal feature cropping sizes. For the audio input,
we extract a 1-second log-mel spectrogram of dimension
257 x 199 starting at the same time as the visual compo-
nent. We also apply volume jittering to increase the robust-
ness of our audio features. We optimize this model using
SGD with momentum 0.9, weight decay 10~° and learn-
ing rate 0.64, with a warm-up period of 10 epochs. For
NCE contrastive learning, the temperature 7 is set as 0.1 for
cross-modal loss, and 0.5 for the within-modal loss. We use
a mini-batch size of 8 on each of our 64 GPUs giving an
effective batch size of 512 for distributed training. In our
ablations, we evaluate the learned representation by fine-
tuning the visual encoder on fold 1 of the HMDB-51 [77]
action recognition dataset.

6.1.1 State-of-the-Art Experiment Details

For our state-of-the-art model, we train for 100 epochs, us-
ing R(2+1)-D-18 visual encoder with transformer temporal
attention pooling, and Resnet-9 for audio encoder. We use
60 frames as input, and feature-crop augmentation (space:
2x624+4x42 & time: 2x 3+1x2).

6.2. Transformer Architecture Details

We use a 2-layer transformer, with 4 attention heads, and
hidden dimension 512. The input to the transformer is the
spatially averaged output of the last convolutional layer of
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Method Pretraining Acc%
DCASE ESCS50

Autoencoder [12] - - 39.9
Random Forest [110] - - 443
Piczak ConvNet [109] - - 64.5
RNH[117] - 72 -
Ensemble [122] - 77 -
ConvRBM [118] - - 86.5
AVTS [74] K400 91 76.7
XDC [6] K400 - 78.0
AVID [98] K400 93 79.1
ACC [91] K400 79.2
Ours: STiCA K400 94 81.1
SoundNet [12] SNet 88 74.2
L3-Net [7] SNet 93 79.3
AVTS [74] SNet 94 82.3
DMC [60] SNet - 82.6
AVTS [74] AS 93 80.6
XDC [6] AS - 85.8
MMV [5] AS - 86.1
AVID [98] AS 96 89.2
GDT [107] AS 98 88.5
ACC [91] AS - 90.8
Human [110] - - 81.3

Table 6: Audio classification. Downstream task ac-
curacies on standard audio classification benchmarks on
DCASE2014 and ESC50. Dataset abbreviations AudioSet,
Kinetics400, SoundNet,

R(2+1)D-18 video backbone. The transformer contextual-
izes features across time to output a fixed feature length rep-
resentation of dimension 512, which is then passed to MLP
head for contrastive learning. While transformers generally
benefit from being optimized with Adam [148], we adhere
to using SGD for simplicity. We also do not observe any
stability issues, likely because the transformer is quite shal-
low.

7. Additional experiments
7.1. Audio Classification

For completeness, we also present audio classification
results on ESC-50 [108] and DCASE-2014 [123]. ESC-
50 [110] is an environmental sound classification dataset
which has 2K sound clips of 50 different audio classes.
ESC-50 has 5 train/test splits of size 1.6K/400 respectively.
DCASE2014 [123] is an acoustic scenes and event clas-
sification dataset which has 100 training and 100 testing
sound clips spanning 10 different audio classes. We demon-



Method Architecture Dataset Top-1 Acc%
HMDB UCF

RotNet3D [65] S3D K600 248 477
CBT [126] S3D+BERT K600 29.5 54.0
MemDPC [53] R-2D3D K400 305 541

AVSF[144]  AVSF K400 441 774
CoCLR [54]  S3D K400  46.1 745
Ours: STICA R(2+1)D-18 K400 482 177.0
MIL-NCE [94] S3D HT 531 827
XDC [6] RQ2+1)D-18 IG65M 560 85.3
MMV [5] RQ+1)D-18  AS 60.0 83.9

ELo[l11] RQ+DD-50 YSM 645 -

Table 7: Comparison to state-of-the-art. Transfer learn-
ing results on UCF-101 and HMDB-51 when video back-
bone is frozen.

strate competitive performance relative to the state-of-the-
art, despite training on a much smaller and less audio-
rich Kinetics-400 dataset. We extract 10 equally spaced
2-second sub-clips from each full audio sample of ESC-
50 [110] and 60 1-second sub-clips from each full sample
of DCASE2014 [123]. We save the activations that result
from the audio encoder to quickly train the linear classi-
fiers. We use activations after the last convolutional layer of
the ResNet-9 and apply a max pooling with kernelsize (1,3)
and stride of (1,2) without padding to the output. For both
datasets, we then optimize a L2 regularized linear layer with
batch size 512 using the Adam optimizer [72] with learning
rate 1x10~%, weight-decay set to 5x10~* and the default
parameters. The classification score for each audio sample
is computed by averaging the sub-clip scores in the sample,
and then predicting the class with the highest score. The
mean top-1 accuracy is then taken across all audio clips and
averaged across all official folds.

7.2. Linear probing results

In Tab. 7, we compute the linear classification results of
our model compared to other recent methods. We find that
our best model has competitive 3-fold linear evaluation re-
sults of 48.2% on HMDB-51 and 77.0% on UCF-101.

7.3. Supervised training on K-400

Here we experiment with training supervisedly on Kine
tics-400 and observing the effect of using feature cropping
(with the configuration 2 medium and 2 small latent space
crops). The experimental results are given in Tab. 8 We
find that even though our method is designed for contrastive
cross-modal pretraining, using feature crops can help in
training in a supervised manner too.
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Fm-Crop HMDB-51 Top-1 Acc.

X 67.6
v 69.0
Table 8:  Supervised Training. We train

R(2+1)D+Transformer architecture  supervisedly
Kinetics-400 with and without feature crops enabled.

the
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ABSTRACT

The dominant paradigm for learning video-text representations — noise contrastive
learning — increases the similarity of the representations of pairs of samples that
are known to be related, such as text and video from the same sample, and pushes
away the representations of all other pairs. We posit that this last behaviour is too
strict, enforcing dissimilar representations even for samples that are semantically-
related — for example, visually similar videos or ones that share the same depicted
action. In this paper, we propose a novel method that alleviates this by leveraging
a generative model to naturally push these related samples together: each sample’s
caption must be reconstructed as a weighted combination of other support sam-
ples’ visual representations. This simple idea ensures that representations are not
overly-specialized to individual samples, are reusable across the dataset, and re-
sults in representations that explicitly encode semantics shared between samples,
unlike noise contrastive learning. Our proposed method outperforms others by a
large margin on MSR-VTT, VATEX, ActivityNet, and MSVD for video-to-text
and text-to-video retrieval.

1 INTRODUCTION

Noise contrastive learning (Gutmann & Hyvirinen, 2010) is emerging as one of the best ap-
proaches to learn data representations both for supervised (Khosla et al., 2020) and unsupervised
regimes (Chen et al., 2020c). The idea is to learn a representation that discriminates any two data
samples while being invariant to certain data transformations. For example, one might learn a repre-
sentation that identifies a specific image up to arbitrary rotations (Misra & van der Maaten, 2020). In
a multi-modal setting, the transformations can separate different modalities, for example, by extract-
ing the audio and visual signals from a video. The resulting noise contrastive representation asso-
ciates audio and visual signals that come from the same source video, differentiating others (Patrick
et al., 2020).

The noise contrastive approach is motivated by the fact that the transformations that are applied to
the data samples leave their ‘meaning’ unchanged. For example, rotating an image does not change
the fact that it contains a cat or not (Gidaris et al., 2018). However, in most cases, we expect to
find many data samples that share the same content without being necessarily related by simple
transformations (e.g. think of any two images of cats). Existing noise contrastive formulations are
unaware of these relationships and still try to assign different representations to these samples (Wu
et al., 2018), despite the fact that they are semantically equivalent. If the representation is learned
for a downstream task such as semantic video retrieval, this might degrade performance.

This suggest that there might be other learning signals that could complement and improve pure
contrastive formulations. In this paper, we explore this idea in the case of learning from two modali-

*Joint first authors.
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Fig. 1: Cross-modal discrimination and cross-captioning. Our model learns from two comple-
mentary losses: (a) Cross-modal contrastive learning learns strong joint video-text embeddings,
but every other sample is considered a negative, pushing away even semantically related captions
(orange arrows). (b) We introduce a generative task of cross-captioning, which alleviates this by
learning to reconstruct a sample’s text representation as a weighted combination of a support-set,
composed of video representations from other samples.
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ties: videos and text, in the form of video transcripts or captions. Given a state-of-the-art contrastive
formulation that learns from these two modalities, we investigate complementary pretext objectives
to improve it. First, we consider the (instance) captioning task, namely mapping a video to the
corresponding text, casting this as a conditional stochastic text generation problem. We show that
this brings only a modest benefit.

We observe that the captioning task is highly sample-specific, as the goal is to produce a caption
which describes a specific video and not any other video, and thus it suffers from the same disad-
vantages (discouraging concept sharing among samples) as contrastive learning. Thus, we propose
to address this issue by switching to a different text generation task. The idea is to modify the text
generator to take as input a learnable mixture of a support-set of videos, which we call cross-instance
captioning. The mixture weights are generated by comparing the learned video representations to
captions’ representations in an online way over the batch. The limited set of support samples acts
as a bottleneck that encourages extraction of shared semantics. In this manner, the embeddings can
associate videos that share similar captions even if the contrastive loss tries to push them apart.

We show that, when the captioning task is added in this manner, it brings a sensible improvement to
already very strong video representation learning results, further improving our own state-of-the-art
baseline by a significant margin.

2 RELATED WORKS

Learning data representations from unlabelled data has been a long standing goal of machine learn-
ing. These approaches are called “self-supervised learning” because the learning signals, termed
pretext tasks, are obtained from the data itself. In the image and video domain, pretext tasks include
colorization (Zhang et al., 2016), rotation (Gidaris et al., 2018), or clustering (Asano et al., 2020a;b;
Caron et al., 2018; Ji et al., 2018), while in the natural language domain, masked language model-
ing (Devlin et al., 2019), and next word prediction (Mikolov et al., 2013; Pennington et al., 2014)
are extremely popular. These pretext tasks can be broadly classified into two classes: generative and
discriminative.

Discriminative approaches learn representations by differentiating input samples, using objectives
such as the contrastive loss (Gutmann & Hyvérinen, 2010; Hadsell et al., 2006). Discriminative
approaches have proven to be particularly successful for image (Chen et al., 2020c; He et al., 2020;
Misra & van der Maaten, 2020; Wu et al., 2018) and video (Han et al., 2019; Morgado et al., 2020;
Patrick et al., 2020) representation learning. Generative approaches, on the other hand, try to re-
construct its input. GANs (Donahue & Simonyan, 2019; Goodfellow et al., 2014; Radford et al.,
2015), autoencoders (Hinton & Salakhutdinov, 2006) and sequence-to-sequence models (Huang
et al., 2020; Sutskever et al., 2014) are popular generative models. In this work, we show the im-
portance of combining both discriminative and generative objectives to learn effective video-text
representations.

The success of representation learning has also been due to advances in model architectures, such as
the Transformer (Vaswani et al., 2017). BERT (Devlin et al., 2019) demonstrated that a transformer
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Fig. 2: (a) Our cross-modal framework with the discriminative (contrastive) objective and the gen-
erative objective. The model learns to associate video-text pairs in a common embedding space with
text and video encoders (top). Meanwhile, the text must also be reconstructed as a weighted com-
bination of video embeddings from a support-set (bottom), selected via attention, which enforces
representation sharing between different samples. (b) Weights matrices (attention maps) used in
each cross-captioning objective (see section 3.1.2).

architecture pretrained on large-scale textual data can learn transferable text representations that can
be fine-tuned on a variety of downstream tasks. Subsequent works (Clark et al., 2020; Lewis et al.,
2020a;b; Radford et al., 2019; Raffel et al., 2019) have improved upon the transformer architecture
or training objective to learn even better representations. Inspired by the success of transformers in
the NLP domain, several works have leveraged transformers to learn transferable image (Chen et al.,
2020a; Desai & Johnson, 2020; Sariyildiz et al., 2020) or multi-modal image-text (Chen et al., 2019;
Li et al., 2020a; 2019; Lu et al., 2019; Su et al., 2019; Tan & Bansal, 2019) and video-multilingual
text (Huang et al., 2021) representations. In this work, we leverage the transformer architecture to
better encode and represent text and video.

Large-scale training data has enabled the more effective pretraining of image (Sun et al., 2017;
Yalniz et al., 2019), video (Ghadiyaram et al., 2019; Thomee et al., 2016) and textual representa-
tions (Raffel et al., 2019). The release of the HowTo100M dataset (Miech et al., 2019), a large-scale
instructional video dataset, has spurred significant interest in leveraging large-scale pretraining to
improve video-text representations for tasks such as video question-answering (Lei et al., 2018),
text-video retrieval (Liu et al., 2019) and video captioning (Zhou et al., 2018b) on smaller datasets
such as YouCooklII (Zhou et al., 2018a), MSVD (Venugopalan et al., 2015a), MSR-VTT (Xu et al.,
2016), LSMDC (Rohrbach et al., 2017), DiDeMo (Hendricks et al., 2018) and ActivityNet (Krishna
et al., 2017). Although semantically rich and diverse, instructional videos from the web are super
noisy and therefore a few approaches have been proposed to combat this. A few works (Luo et al.,
2020; Sun et al., 2019a;b; Zhu & Yang, 2020) extend the BERT model to accept both visual and
textual tokens to learn high-level semantic video-text representations. Other works have leveraged
the contrastive loss (Miech et al., 2020) and show that using the raw audio (Alayrac et al., 2020;
Rouditchenko et al., 2020) and other modalities (Gabeur et al., 2020) can be used to better align
and improve video-text representations. While all these approaches rely on a contrastive objec-
tive, VidTranslate (Korbar et al., 2020) shows that a generative objective can also be used to learn
joint video-text representations. In contrast to Korbar et al. (2020), we show that combining con-
trastive and generative objectives to pre-train video-text representations on large-scale data such as
HowTol100M is very effective. The generative objective serves as regularizer to mitigate the strict-
ness of the instance discrimination task of the constrastive objective, showing benefits similar to
approaches such as clustering (Caron et al., 2020; Li et al., 2020b) and feature mixing (Kalantidis
et al., 2020) which have been applied in the image domain.
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3 METHOD

We consider the problem of learning multimodal representations from a corpus C of video-text pairs
(v,t), where v is a video and ¢ is its corresponding text (caption or transcription). Our goal is to
learn a pair of representation maps ¢, = ¥(v) and ¢; = ®(t), with outputs in a d-dimensional
embedding space c,, c; € R?, where semantically similar instances are close to each other.

3.1 OBIJECTIVE FOR LEARNING MULTIMODAL REPRESENTATIONS

We consider two learning objectives, also illustrated in Figure 1. The first is the contrastive objective,
pushing embeddings c¢; and ¢, to be close if text ¢ and video v come from the same sample and push-
ing them apart otherwise. This assumes that every sample is its own class and does not benefit from
modelling similiarities across instances. The second objective is generative captioning. In its most
basic variant, it maximizes the probability of generating the text ¢ given the corresponding video v.
However, we suggest that variants that explicitly promote concept sharing between instances will
result in better downstream performance, in tasks such as video retrieval. These variants, illustrated
in Figure 2, have in common that the caption ¢ is reconstructed from a learned weighted combina-
tion over other videos 0. This is a form of attention (Bahdanau et al., 2014) which encourages the
network to learn about which videos share similar semantics, compensating for the contrastive loss
and grouping them implicitly.

In the following, we denote with 3 C C a batch of multi-modal samples, i.e. a finite collection of
video-text pairs (t,v) € C. For simplicity, we denote the batch as B = {(t!,v")}2 ,}.

3.1.1 CONTRASTIVE OBJECTIVE

. . . T . . .
To define the contrastive objective, let s(a,b) = W be the similarity measure between vectors

a and b. Following Faghri et al. (2018), we adopt the hinge-based triplet ranking loss with hard
negative mining:

B

1 )
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i=1

where « is the correlation margin between positive and negative pairs and []. = max{0, -} is the

hinge function. In our experiments, we set a = 0.2.

3.1.2 CROSS-CAPTIONING OBJECTIVES

In the conventional captioning, the decoder seeks to optimize the negative log-likelihood of a text
sequence ¢ given its corresponding video v:

B
. 1 i|
[eaption E E IOg p(tZ ‘62; ) . @

i=1

Here, the log-likelihood is obtained via auto-regressive decoding (Vaswani et al., 2017) from an
intermediate video embedding e¢ = ®’(v?). For the cross-captioning objective, we modify this loss
to condition the generation process on a weighted average of the embeddings of the other videos
in the batch, which we call the support-set. The weights themselves, which can be interpreted as a
batch-wise attention, are obtained as a softmax distribution with temperature 7" over batch indices
based on the video embeddings, as follows:

- T ;
[ cross-captioning _ lng(tz |€ €Xp ct’ ”>/ . e%. 3)
Z ]g ZkGS €xXp (Cf7 >/T

By default, the summation in the softmax is conducted over a support set S; containing all indices
except ¢. In the experiments, we consider the following attention types for reconstruction. Iden-
tity captioning (S; = {i}) generates the caption from the corresponding video and reduces to the
standard captioning objective, eq. (2). Full support (S; = {1, ..., B}) considers all videos as pos-
sible candidates for captioning. Hybrid captioning sets the weights in eq. (3) as the average of the
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weights for identity captioning and full support. Cross-captioning (S; = {j # i}) considers all
but the video that one wishes to caption. This variant forces the network to extract all information
required for captioning from other videos in the batch. Figure 2 compares graphically these attention
mechanisms.

Considering both discriminative and generative objectives for learning multimodal representations,
our full objective is £ = LCONrast ) £eross-captioning "y here ) balances two objectives. We set A = 10
to ensure similar magnitudes for both losses in our experiments. In the training phase, we use
Adam (Kingma & Ba, 2015) to minimize our loss. At inference time, we directly use ®(¢) and ¥ (v)
to encode video and text representations for retrieval.

3.2 MODEL ARCHITECTURE

We now discuss the details of the encoders and decoder components in our architecture, illustrated
in fig. 2. For the fext decoder p(t|e,) in eq. (2) and (3), we use a pre-trained T-5 decoder (Raffel
et al., 2019).

For the video representation ¢, = ¥(v) = U"(¥’(v)), we use a video encoder e,, = ¥’ (v) followed
by a multi-layer transformer pooling head ¢,, = ¥”(e,,). The encoder ¥’ (v) concatenates the output
of pretrained ResNet-152 (He et al., 2016) and R(2+1)D-34 (Tran et al., 2018) networks applied to
individual video frames, resulting in a code e,, = [e,1 - - - €,07] where M is the maximum duration
of a video clip. For the pooling head ¢, = ¥”(e,), we consider a transformer architecture to
attend to important context and summarize it into a fixed-length representation c,. For this, we
follow MMT (Gabeur et al., 2020), but with two important differences. First, while MMT uses
7 expert features that results in 7x the sequence length, we only use a transformer to attend to
early-fused motion and appearance features as the video representation, thus significantly reducing
the sequence length and computational cost. Second, instead of stacking 6 transformer layers to
encode the visual stream as in MMT, we only use a shallow two-layer transformer architecture with
additional pre-encoders, further increasing model efficiency. As temporal 1D-convolutional neural
networks (CNNs) (LeCun et al., 1998) were shown to effectively capture temporal dependencies in
videos (Dong et al., 2019), we integrate CNNs into our transformer pooling heads to better capture
video temporal signals. In more detail, we compute ¢, = ¥"(e,) by chaining two transformer
layers, each of the type:

1(e) = BN(FFN(eatn) + €atn); €an = BN(MHA(f(e)) + f(e)). 4)

Here f is a pre-encoder that refines the video representation; we found empirically that a 1D
CNN works well for this purpose. Then, we apply multi-head self-attention (MHA) (Huang et al.,
2019; Vaswani et al., 2017) followed by a feed-forward network (FFN) with batch normalization
(BN) (Ioffe & Szegedy, 2015). The architecture maps the input sequence e, to a new ‘contextual-
ized’ sequence of representation vectors; we take the first one as c,.

The text representation decomposes in the same way as ¢; = ®(t) = ®”(®’(t)). The text encoder
er = ®’(t) uses a pretrained T-5 network resulting in a code e; = [es - - - exn], Where N is the
maximum length of a sentence. The pooling head ¢; = ®”'(e;) follows the same design as the video
case, but f is set to a recurrent neural network (RNN) instead of a CNN. Please refer to the appendix
for details.

In practice, for computational reasons, we use eq. (3) to finetune the parameters of all networks
except the video encoder ¥’ (v), which is fixed.

4 EXPERIMENTS

We validate empirically the ability of our method to learn better representations for the downstream
tasks of text-to-video and video-to-text retrieval. First, in sec. 4.2 we ablate various model com-
ponents on the MSR-VTT dataset. Then, in sec. 4.3 we show that our best model significantly
outperforms state-of-the-art retrieval systems on three datasets, MSR-VTT, ActivtyNet and VATEX.
Finally, in sec. 4.4 we analyse qualitatively the effect of the attention mechanism used during train-
ing.
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Table 2: Model Architecture and Training Details Ablation. Text— Video retrieval performance
on MSR-VTT. Recall@1, 5, and Median Recall are shown.

(a) Video Encoder. Stronger features and combina- (b) Feature Aggregation. Learning temporal atten-
tion improves performance. tion yields strong gains over pooling.
Feature source RQ11 RQ@Q51 MdR Temporal reduction RQ1 1+ RQ5 1 MdR |
R-152 20.8  46.2 6.0 Max 21.8 49.5 8.0
R(2+1)D-34 23.7 53.2 4.0 Mean 22.5 51.3 6.0
R(2+1)D-34 +R-152 27.2 55.2 3.0 Multi-Head Attn 27.2 55.2 3.0
(c) Text Encoder. Stronger encoding of (d) Text Decoder. Stronger decoding of text im-
text improves retrieval. proves retrieval.
Text Encoder RQ1 T RQ51 MdR | Text Encoder Text Decoder R@Q1 1 RQ5 1 MdR |
W2V (GloVe) 22.1 49.8 6.0 T5-Base T5-Small 262 542 3.0
T5-Small 24.5 51.2 3.0 T5-Base T5-Base 27.2 55.2 3.0
T5-Base 27.2 55.2 3.0

(e) Contrastive Loss. Inter-modal Triplet loss yields the best performance.

Contrastive RQ1 1T RQ51 MdR |
InfoNCE (inter+intra) 10.7  28.5 15.0
InfoNCE (inter) 10.8  29.0 14.5
Triplet (inter+intra) 26.8 56.2 3.0
Triplet (inter) 27.2 55.2 3.0

(f) Support-set Size. Retrieval degrades when reconstructing from too small and too large sets.

Batch-size Memory bank
Size 8 16 32 64 128 256 512 2k 8k
R@1/5 18.5/45.6 20.7/49.9 25.2/54.6 27.2/55.2 28.0/56.1 26.9/55.0 25.3/53.5 26.8/54.7 26.2/52.7

4.1 EXPERIMENTAL SETUP

Datasets. HowTol00M (Miech et al., 2019) is a large-scale instructional video collection of 1.2
million YouTube videos, along with automatic speech recognition transcripts. We use this dataset
for our pre-training experiments. MSR-VTT (Xu et al., 2016) contains 10,000 videos, where each
video is annotated with 20 descriptions. We report results on the 1k-A split (9,000 training, 1,000
testing) as in Liu et al. (2019). VATEX (Wang et al., 2019) is a multilingual (Chinese and English)
video-text dataset with 34,911 videos. We use the official training split with 25,991 videos and
report on the validation split as in HGR (Chen et al., 2020b). The ActivityNet Caption (Krishna
et al., 2017) dataset consists of densely annotated temporal segments of 20K YouTube videos. We
use the 10K training split to train from scratch/ finetune the model and report the performance on
the 5K ‘vall’ split. The MSVD (Chen & Dolan, 2011) dataset consists of 80K English descriptions
for 1,970 videos from YouTube, with each video associated with around 40 sentences each. We use
the standard split of 1,200, 100, and 670 videos for training, validation, and testing (Liu et al., 2019;
Venugopalan et al., 2015b; Xu et al., 2015).

Evaluation Metrics. To measure the text-to-video and video-to-
text retrieval performance, we choose Recall at K (R@K) and Me-  Taple 1: Effect of learning
dian Rank (MedR), which are common metrics in information re-  ghjectives. Text— Video re-

trieval. trieval on MSR-VTT.

4.2 ABLATIONS RQI1T RQ@51 MdR|

None 259 530 4.0
In Tab. 2, we first only ablate the cross-modal retrieval part of our  Identity 26.4 51.9 4.0
network architecture, while the generative objectives are analysed  Full 258 539 3.0
in Tab. 1. Hybrid 26.0 54.8 3.0
Cross 272 552 3.0
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Video Encoder. In Tab. 2a, we show the effect of the choice of

visual input features. We find that for text-to-video retrieval at Recall at 1 and 5 (RQ1, RQ5),
features obtained from a video R(2+1)D-34 ResNet achieve 2.9% and 7.0% higher performance
compared to only image-frame based features from a ResNet-152. A further 3.5% and 2.0% can be
gained by concatenating both features, yielding the strongest M dR of 3.0%.

Feature Aggregation. While the features from both video and image-based visual encoders have re-
duced spatial extent after a fully-connected layer, the temporal dimension can be reduced in various
ways. In Tab. 2b, we find that our multi-head, parameterized attention reduction yields strong gains
over the mean- or max-pooling baselines of over 4% for RQ1. This shows that learning attention
over the temporal dimension of fixed feature sets can give strong gains even without fine-tuning the
encoder.

Text Encoder. In Tab. 2¢, we find decent gains of 2.7% and 0.4% for R@1,5 for using T5-base,
instead of T5-small. We do not use the T-5-Large model, as in Korbar et al. (2020), due to the
prohibitively large relative model size increase of +220%.

Text Decoder. In Tab. 2d, we find that using a larger text decoder gives a 1% increase in performance
when using the cross-captioning objective.

Contrastive Loss. To validate the choice of a triplet loss in eq. (1), in Tab. 2e, we compare the
results of the InfoNCE contrastive loss (Oord et al., 2018) with a triplet loss, with both the intra and
inter-intra modality variants. We find that InfoNCE (Oord et al., 2018) loss does not work well in
our case, likely due to the difficulty in tuning this loss to have the right combination of temperature
and batch-size.

Support-Set Size. Lastly, in Tab. 2f, we show the effect of the size of the support set used for
cross-instance captioning. We find that our reconstruction loss indeed acts as a bottleneck, with both
smaller and very large sizes degrading the performance.

Captioning Objective. In Tab. 1, we show the effect of the different variants of our learning objec-
tive eq. (3). First, we find that the naive addition of a reconstruction objective (“Identity’’) does not
improve the contrastive-only baseline (“None”) much. Considering reconstruction from other videos
improves the performance more. In particular, the “Hybrid” variant, which combines “Identity”” and
“Full” (sec. 3.1.2) improves Recall at 1 and 5 from 25.9% and 53.0% to 26.0% and 54.8%, respec-
tively. However, the best result by far (27.2/55.2%) is obtained forcing captions to be reconstructed
only from other videos, via our cross-instance attention mechanism (“Cross”). This variant cannot
use information contained in a video to generate the corresponding caption and thus entirely relies
on the model to discover meaningful relationship between different videos. This newly-proposed
scheme seems to have the most beneficial effect for semantic retrieval.

Table 3: Retrieval performance on the MSR-VTT dataset. Models in the second group are
additionally pretrained on HowTo100M.

Text —Video Video — Text

RQI11T RQ51T RQ10t MdR] RQ11T RQ5t R@Q10TMdR|
Random Baseline 0.1 0.5 1.0 500.0 0.1 0.5 1.0 500.0
JSFusion (Yu et al., 2018) 10.2 31.2 432 13.0 -— — — —
HT100M (Miech et al., 2019) 12.1 35.0 48.0 12.0 — — — —
JPoSE (Wray et al., 2019) 14.3 38.1 53.0 9.0 164 41.3 544 8.7
CE (Liu et al., 2019) 20.9 488 624 6.0 20.6 50.3 64.0 5.3
MMT (Gabeur et al., 2020) 24.6 54.0 67.1 4.0 244 56.0 67.8 4.0
Ours 274 56.3 67.7 3.0 26.6 55.1 67.5 3.0
VidTranslate (Korbar et al., 2020) 4.7 - 52.8 — — — — —
HT100M (Miech et al., 2019) 14.9 40.2 528 9.0 16.8 41.7 55.1 8.0
NoiseEstimation (Amrani et al., 2020) 17.4 41.6 53.6 8.0 — — — —
UniVL (Luo et al., 2020) 21.2 496 63.1 6.0 — — - —
AVLnet (Rouditchenko et al., 2020) 27.1 55.6 66.6 4.0 28.5 54.6 65.2 4.0
MMT (Gabeur et al., 2020) 26.6 57.1 69.6 4.0 27.0 57.5 69.7 3.7
Ours-pretrained 30.1 58.5 69.3 3.0 285 586 71.6 3.0
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Table 4: Retrieval performance on the VATEX dataset

Text — Video Video — Text
RQIT RQ51T RQ10T MdR| RQ@11 R@5T RQ10T MdR]

Random Baseline 0.2 0.7 1.05 2000.5 0.02 0.1 1.02 2100.5
VSE (Kiros et al., 2014) 28.0 64.3 769 3.0 — - — -
VSE++ (Faghri et al., 2018) 33.7 70.1 81.0 2.0 - - - -
Dual (Dong et al., 2019) 31.1 674 789 3.0 — — — —
HGR (Chen et al., 2020b) 35.1 73.5 83.5 2.0 - - -
Ours 446 818 895 1.0 581 838 909 1.0

Ours-pretrained 459 824 904 10 612 8.2 91.8 1.0

Table 5: Retrieval performance on ActivityNet

Text —Video Video — Text

RQI11 RQ51T RQ50t MdR| RQ11 RQ5 1 R@501T MdR)
Random Baseline 0.02 0.1 1.02 2458 0.02 0.1 1.02 2458
FSE(Zhang et al., 2018) 18.2 44.8 89.1 7.0 16.7 43.1 884 7.0
CE (Liu et al., 2019) 18.2 47.7 914 6.0 17.7 46.6 90.9 6.0
HSE (Zhang et al., 2018) 20.5 49.3 — — 18.7 48.1 — —
MMT (Gabeur et al., 2020) 227 542 932 50 229 548 93.1 4.3
Ours 26.8 58.1 935 3.0 255 573 935 3.0
MMT-pretrained (Gabeur et al., 2020) 28.7 61.4 945 3.3 289 61.1 943 4.0
Ours-pretrained 292 61.6 947 3.0 28.7 60.8 948 2.0

Table 6: Retrieval performance on the MSVD dataset

Text — Video Video —Text
RQ11 RQ51T RQ10tMdR| RQ11T RQ5T RQ10T MdR|
VSE (Kiros et al., 2014) 12.3 30.1 423 140 — — - —

VSE++ (Faghri et al., 2018) 15.4 39.6 53.0 9.0 - - - -
Multi. Cues (Mithun et al., 2018) 20.3 47.8 61.1 6.0 - — - -

CE (Liu et al., 2019) 19.8 49.0 63.8 6.0 - — — -
Ours 23.0 528 658 50 273 507 608 5.0
Ours-pretrained 284 60.0 729 4.0 347 599 700 3.0

4.3 COMPARISON TO STATE-OF-THE-ART

In this section, we compare the results of our method to other recent text-to-video and video-to-text
retrieval approaches on various datasets. In Tab. 3 to 5, we show the results of our model applied
to text-to-video and video-to-text retrieval on MSR-VTT, VATEX, ActivityNet and MSVD with and
without pre-trainig on HowTo100M. Without pre-training, our method outperforms all others in all
metrics and datasets. In particular, for the VATEX dataset, our retrieval performance at recall at
1 and 5 is 45.9% and 82.4%, exceeding recent state-of-the-art methods (Chen et al., 2020b) by a
margin of 9%. For ActivityNet, our model outperforms MMT by a margin of 4% at recall at 1. With
pre-training on HowTo100M, our performance further increases across the board. Notably, unlike
MMT which uses 7 features, our model uses only 2 features and achieves state-of-the-art in most
metrics.

4.4 ANALYSIS

In order to better understand the effect of our learning objective, we visualize the soft attention of our
best-performing cross-instance reconstruction model in fig. 3. As we can see in the top-left square,
which shows the pairwise attention between all pairs of videos in the batch, it is highly focused, with
the model mostly attending one or two other instances in the batch.
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For the first video’s caption reconstruction (second Support-set
row), we find that the model solely attends to another 3 i
musical performance video that is in the batch, ignor-
ing the others. For the second video (third row), the
model focuses on another sample that shows the sea
but differs in most other aspects since there are no
semantically-equivalent clips in the batch. The third
video shares a similar scenario. These examples show
that the bottleneck is effective at forcing the model .
to avoid memorising the video-caption association of ~Fig. 3: Support-set attention map. At-
each clip in isolation, and attempt to match other clips tention scores of all pairs in a batch (top-

more broadly, since an exact (or very close) match is left square) and a subset of rows/columns
not guaranteed. (other squares) on VTT.

To caption

5 CONCLUSION

In this work, we studied classic contrastive learning methods such as the triplet loss to learn video-
text representations for cross-model retrieval. We suggested that the contrastive approach might pull
apart videos and captions even when they are semantically equivalent, which can hinder downstream
retrieval performance. To mitigate this effect, we propose to consider a captioning pretext task as an
additional learning objective. In particular, we show that cross-instance captioning can encourage
the representation to pull together videos that share a similar caption, and are thus likely to be
equivalent for retrieval. Leveraging these ideas, our model achieves state-of-the-art performance on
the text-to-video and video-to-text retrieval tasks, on three datasets.

While we demonstrated these ideas in the specific case of text-to-video retrieval, they can in principle
generalize to any setting that utilizes a contrastive loss, including self-supervised learning, provided
that it is possible to learn reasonable conditional generators of a modality or data stream given
another.
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6 APPENDIX

The appendix is organized as follows: First, we provide more details about our model. Then we
introduce the datasets and the experimental setup. Finally, we provide additional qualitative and
quantitative experimental results for video-text retrieval and captioning.

6.1 MODEL DETAILS

Implementation details and hyper parameters. For our text encoder, we use the T5-base model
pre-trained on the “Colossal Clean Crawled Corpus” (C4) (Raffel et al., 2019). We use its corre-
sponding text tokenizer and encode a sentence into a sequence of 1024 dimensional vectors.

For our visual encoder, our model utilizes only the motion and the appearance features. For the mo-
tion feature, we use a 34-layer, R(2+1)-D (Tran et al., 2018) model pre-trained on IG65M (Ghadi-
yaram et al., 2019) and apply a spatial-temporal average pooling over the last convolutonal layer,
resulting in a 512-dimensional vector. For the appearance feature, we use the 2048-dimension flat-
tened pool-5 layer of the standard ResNet152 (He et al., 2016) pre-trained on Imagenet (Deng et al.,
2009). We extract features at a rate of 1 feature per second and simply concatenate the two features,
resulting in a 2560-dimension visual input stream. Noteworthily, instead of using 9 and 7 different
types of visual features as in CE (Liu et al., 2019) and MMT (Gabeur et al., 2020), we use only the
above 2 features and achieve on par or superior performance. Also, with early fusion, our model
does not suffer from additional computation required for the extended sequence length in MMT. For
the text decoder, we use the T5-base model decoder, also pre-trained on C4.

As illustrated in Fig. 4, our transformer pooling head is composed of a
pre-encoder, a multi-head self-attention (MHA), and a feed-forward layer
(FEN). For pre-encoders, we use a one-layer MLP with a d-dimensional
output for mapping video features into the common embedding space. We
use 1024-dimension bi-directional GRU as the text pre-encoder. For the
ID-CNN prior, we use kernels with size [2, 3,4, 6] as the visual and text
pre-encoders. We set the embedding dimension to 1024 and use 4 attention
heads in the transformer pooling layers. The hidden dimension of FFN is
2048.

Add & Norm

Add & Norm

v

Training and Inference time. Pre-training on 1.2 million HowTo100M
videos takes around 160 GPU hours (NVIDIA V100) for 20 epochs. We
speed up the pre-training process by distributing the workload over 8 GPUs.
We use 1 GPU for the fine-tuning or training from scratch experiments. For
the MSR-VTT 1k-A split, it takes 12 GPU hours to train our full model on
180K video-text pairs for 20 epochs. For Vatex, it takes 32 GPU hours to
train on 260K video-text pairs for 30 epochs. For ActivityNet, it takes 2.5
GPU hours to train on 10K video-text paris for 28 epochs.

CNN/RNN

x L

Fig. 4: Transformer
pooling head.

For inference, the encoding speed is around 250-300 video/sec and 200-250 text query/sec. The
overall text-to-video search speed on 5,000 video-text pairs (5,000 text queries over 5,000 videos)
is 30-34 seconds including encoding. The speed of text-to-video retrieval is similar to video-to-text
retrieval.

6.2 EXPERIMENT DETAILS

The margin « of the max-margin loss is 0.2, and the temperature T is set to 0.1 as used in Sim-
CLR Chen et al. (2020c). We use the Adam (Kingma & Ba, 2015) optimizer with a initial learning
rate 5 - 1072 and clip gradients greater than 0.2 during the training phase. Dropout rate is 0.3 for all
datasets besides ActivityNet (0.0).

As the average video/text lengths and videos available are quite different across datasets, we adjust
our training scheme accordingly. When training on MSR-VTT, ActivtyNet and Vatex, batch-size is
set to 64. For MSR-VTT training, we sample and truncate videos to 32 seconds, text to 100 tokens
and train for 20 epochs. For Vatex, videos are at most 64 seconds and we train for 30 epochs. For
ActivtityNet training, videos are at most 512 seconds and 256 tokens for the text part. We train
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for 28 epochs on ActivityNet. For fine-tuning HowTo100M pre-trained model, we reduce training
epochs into quarters.

6.3 DATASET DETAILS

HowTo100M (Miech et al., 2019) is a large-scale instructional video collection of 1.2 million
Youtube videos, along with automatic speech recognition transcripts. There are more than 100
million clips (ASR segments) defined in HowTo100M. We use this dataset for pretraining.

MSR-VTT (Xu et al., 2016) contains 10,000 videos, where each video is annotated with 20 descrip-
tions. For retrieval experiments and ablation studies, we follow the training protocol and defined
in Gabeur et al. (2020); Liu et al. (2019); Miech et al. (2019) and evaluate on text-to-video and
video-to-text search tasks on the 1k-A testing split with 1,000 video or text candidates defined by Yu
et al. (2018). For captioning task, we evaluate on the standard testing split with 2,990 videos.

VATEX (Wang et al., 2019) is a multilingual (Chinese and English) video-text dataset with 34,911
videos. We use the official split with 25,991 videos for training. As the testing annotations are
private in VATEX, we follow the protocol in Chen et al. (2020b) to split the validation set equally
(1,500 validation and 1,500 testing videos) for model selection and testing. For each video, 10
English and 10 Chinese descriptions are available, and we only use the English annotations.

ActivityNet Dense Caption dataset consists densely annotated temporal segments of 20K YouTube
videos. Following Gabeur et al. (2020); Zhang et al. (2018), we concatenate descriptions of seg-
ments in a video to construct “video-paragraph” for retrieval and captioning. We use the 10K training
split to train from scratch/ finetune the model and report the performance on the 5K ’vall’ split.

MSYVD dataset consists of 80K English descriptions for 1,970 videos from YouTube, with each
video associated with around 40 sentences each. We use the standard split of 1200, 100, and 670
videos for training, validation, and testing (Liu et al., 2019; Venugopalan et al., 2015b; Xu et al.,
2015).

6.4 VIDEO CAPTIONING EXPERIMENTS

To measure captioning/text generation performance, we report BLEU4 (Papineni et al., 2002), ME-
TEOR (Denkowski & Lavie, 2014), Rogue-L (Lin, 2004) and CIDEr (Vedantam et al., 2015) met-
rics. We report results on the MSR-VTT, VATEX and ActivityNet datasets.

Table 7: Captioning performance on the MSR-VTT dataset

Captioning
BLUE4 METEOR Rogue-L. CIDEr

VidTranslate (Korbar et al., 2020)  41.7 28.5 — —
POS+VCT (Hou et al., 2019) 42.3 29.7 62.8 49.1

ORG (Zhang et al., 2020) 43.6 28.8 62.1 50.9
Ours, MSR-VTT only 39.7 28.3 60.5 46.5
Ours, HT100M + MSR-VTT 38.9 28.2 59.8 48.6

Table 8: Captioning performance on the VATEX dataset

Captioning
Blue@4 METEOR Rogue-L. CIDEr
Shared Enc-Dec (Wang et al., 2019)  28.4 21.7 47.0 45.1

ORG (Zhang et al., 2020) 32.1 22.2 48.9 49.7
Ours, VATEX only 32.8 244 49.1 51.2
Ours, HT100M + Vatex 32.5 24.1 48.9 50.5
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Table 9: Captioning performance on the ActivtyNet dataset

Captioning
Blue@4 METEOR Rogue-L CIDEr
DENSE (Krishna et al., 2017) 1.6 8.9 — —
DVC-D-A (Liet al., 2018) 1.7 9.3 - —
Bi-LSTM+TempoAttn (Zhou et al., 2018b) 2.1 10.0 — —
Masked Transformer (Zhou et al., 2018b) 2.8 11.1 — —
QOurs, ActivityNet only 1.5 6.9 17.8 3.2
Ours, HT100M + ActivityNet 1.4 6.9 17.5 3.1

6.5 ZERO-SHOT RETRIEVAL EXPERIMENTS

We also evaluate our model in the zero-shot setting on MSR-VTT, Vatex, ActivityNet and MSVD,
after pre-training on HT100M. While we are able to get reasonable results on MSR-VTT and MSVD,
our results are not great on Vatex and Activity-Net due to significant domain gap.

Table 10: Zero-shot Retrieval performance on VATEX, MSR-VTT, MSVD and ActivityNet.

Text — Video Video — Text
RQl1t R@5T RQ10F MdR| RQ@1t RQ5F RQ10T MdR|

Zero-Shot

ActivityNet ~ 0.06 0.2 0.5 1907.0 0.0 0.2 0.3 2238.0
VATEX 0.07 0.4 0.7 682.0 0.07 0.4 0.9 697
MSVD 8.9 26.0 37.9 18.0 21.4 46.2 57.7 6.0
MSR-VTT 8.7 23.0 31.1 31.0 12.7 27.5 36.2 24.0

6.6 ACTION RECOGNITION

Lastly, we evaluate our model on the video action recognition task on HMDB-51 (Kuehne et al.,
2011) and UCF-101 (Soomro et al., 2012). For this, we use the R(2+1)D-34 (pretrained on IG65M)
model as well as a ResNet-152 model (pretrained on Imagenet), as in our method. We extract a
feature per second per video by concatenating the features from each model (2560-D), and obtain
an average representation per video using either average pooling (2560-D) or our proposed trans-
former pooling head (1024-D) pre-trained on HT100M using cross-captioning objective. We then
train a linear classifier for 1500 epochs for HMDB-51 (500 for UCF-101) on these features using
Adam (Kingma & Ba, 2015) optimizer with learning rate of 1e~* and weight decay le~* with early
stopping. We also drop the learning rate by 10 at epochs 200, 400 for UCF-101 and 1000, 1200
for HMDB-51. In Table 11, we show the results of training only a linear-layer on features extracted
from our fixed backbone with or without a learned transformer-pooling head. We find that our trans-
former temporal pooling head provides significant benefits over the baseline of simply average pool-
ing the features, demonstrating the effectiveness of building contextualized representations using our
proposed transformer. In particular, we see improvements of over 7% on HMDB-51 and 34% on
UCF-101 by replacing average pooling with our transformer pooling head to aggregate features. We
observe that naive average pooling performs significantly worse than our transformer pooling under
evaluation protocol. This is likely because 1) the average pooling collapses temporal information,
making the linear layer based classification difficult 2) compared to the transformer pooling, it does
not benefit from large-scale pretraining on a wide variety of action videos of HT100M. We further
compare very favorably to the current state-of-the-art approaches. In particular, we outperform all
other approaches, both supervised and self-supervised, except the recently introduced Omni (Duan
et al., 2020) which was finetuned on both UCF-101 and HMDB-51, while we only trained a linear
classifier on extracted features. However, it should be noted that it is very difficult to fairly com-
pare all these different approaches because they may use different modalities (images, RGB video,
optical flow, audio, ASR outputs), pretraining datasets (Kinetics-400, HT100M, IG65M, Imagenet),
architectures (S3D, I3D, R(2+1)D, R3D), pre-training (supervised, self-supervised) and downstream
training (frozen, finetuned) strategies.
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Table 11: Action recognition. Results of training only a linear-layer, on features extracted from our
fixed backbone with or without a learned transformer-pooling head. We compare to the state-of-art
supervised and self-supervised pretrainig methods on the HMDB-51 and UCF-101 action recogni-
tion task, for different downstream training protocols (“FT?” stands for finetuned). We report aver-
age Top-1 accuracy across all 3 folds. Dataset abbreviations: AudioSet, HMDBS51, HowTo100M,
Instagram65M, IMagenet-1000, Kinetics400, OmniSource Images + Videos, Sports1M, UCF101,
YouTube8M. Other abbreviations: Video modality, Flow modality, Image modality, Audio modal-
ity, Transformer pooling, Average pooling

Method Mod  Dataset Model FT? H51 U101
Self-Supervised Pre-training

MIL-NCE (Miech et al., 2020) Vv, T HM S3D-G X 53.1 82.7
MIL-NCE (Miech et al., 2020) V,T HM S3D-G v 61.0 91.3
MMV (Alayrac et al., 2020) V,T,A HM+AS TSM-50x2 X 67.1 91.8
ELo (Piergiovanni et al., 2020) VEA YT8M R(2+1)D-50x3 v 67.4 93.8
XDC (Alwassel et al., 2020) V,A 1G65M R(2+1)D-18 v 68.9 95.5
GDT (Patrick et al., 2020) V,A 1G65M R(2+1)D-18 v 72.8 95.2
MMV (Alayrac et al., 2020) V,T, A HM+AS TSM-50x2 v 75.0 95.2
Supervised Pre-training

P3D (Qiu et al., 2017) V1 SIM+IM P3D v — 88.6
TSN (Wang et al., 2018) VI M TSN v 69.4 94.2
13D (Carreira & Zisserman, 2017) V,I K400+IM 13D v 74.8 95.6
R(2+1)D (Tran et al., 2018) \'% K400 R(2+1)D-34 v 74.5 96.8
S3D-G (Xie et al., 2018) VI K400+IM S3D-G v 75.9 96.8
13D (Carreira & Zisserman, 2017) VI K400+IM 13D v 771 96.7
R(2+1)D (Tran et al., 2018) \Y K400 R(2+1)D-34 v 76.4  95.5
R(2+1)D (Tran et al., 2018) V,F K400 R(2+1)D-34x2 v 78.7 97.3
Omni (Duan et al., 2020) V1 K400+0S Slow-8x8-R101 v 79.0 97.3
13D (Carreira & Zisserman, 2017) V,EI =~ K400+IM 13Dx2 v 80.7 98.0
Omni (Duan et al., 2020) V,EI  K400+0S Slow-8x8-R101x2 v 83.8 98.6
Ours (Avg-pooling) V1 1G65M+IM R(2+1)D-34+R152 X 73.7  64.3
Ours (T-pooling) \'Al HM+IG65M+IM  R(2+1)D-34+R152 X 81.3 98.0

6.7 STATISTICAL SIGNIFICANCE

In Table 12, we show the results of finetuning our pretrained model for 3 times on the VATEX
dataset. We find that the variance is quite low and our model consistently beats the state of the art.

Table 12: Retrieval performance on the VATEX dataset

Text —Video Video — Text
RQIT R@5F RQ@10t MdR| RQI11T RQ@5F RQ@101T MdR|
Random Baseline 0.2 0.7 1.05 2000.5 0.02 0.1 1.02 2100.5

VSE (Kiros et al., 2014) 28.0 64.3 76.9 3.0 — - — -
VSE++ (Faghri et al., 2018) 33.7 70.1 81.0 2.0 — - — —
Dual (Dong et al., 2019) 31.1 67.4 78.9 3.0 — - — -
HGR (Chen et al., 2020b) 35.1 73.5 83.5 2.0 — — — —
Ours 44.9.02821:0289.70> 1.0 584.01844.0291.01035 1.0
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6.8 ADDITIONAL QUALITATIVE RESULTS

We provide addition qualitative text-to-video retrieval results on MSR-VTT, VATEX, ActivityNet in
Fig. 5. Given a text query, in most cases, our model successfully retrieves the correct videos marked
in green.

a person is swimming in some white water rapids a man is showing the interior of a car

(a) MSR-VTT

a man is snow skiing down the mountain slope smoothly

(b) VATEX

A woman is seen speaking to the camera while holding an A close up of nails are seen followed by a shot of brushes
accordion and moving her hands around . She and nail polish . A person is then seen wiping polish onto a
demonstrates how to play the instrument while still pad and rubbing the object all over her nails . She then
speaking to the camera and moving all around puts a coating over the nail and shows it off again

(c) ActivityNet

Fig. 5: Examples of top-3 Text— Video retrieval results and similarities on the MSR-VTT, VATEX,
and ActivityNet testing set. Only one correct video (colored in green) for each text query on the top.
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Abstract

This paper studies zero-shot cross-lingual
transfer of vision-language models. Specif-
ically, we focus on multilingual text-to-
video search and propose a Transformer-based
model that learns contextual multilingual mul-
timodal embeddings. Under a zero-shot set-
ting, we empirically demonstrate that perfor-
mance degrades significantly when we query
the multilingual text-video model with non-
English sentences. To address this prob-
lem, we introduce a multilingual multimodal
pre-training strategy, and collect a new mul-
tilingual instructional video dataset (Multi-
HowTol00M) for pre-training. Experiments
on VTT show that our method significantly im-
proves video search in non-English languages
without additional annotations. Furthermore,
when multilingual annotations are available,
our method outperforms recent baselines by
a large margin in multilingual text-to-video
search on VTT and VATEX; as well as in mul-
tilingual text-to-image search on Multi30K.
Our model and Multi-HowTol00M is avail-
able at http://github.com/berniebear/
Multi-HT100M

1 Introduction

One of the key challenges at the intersection of
computer vision (CV) and natural language pro-
cessing (NLP) is building versatile vision-language
models that not only work in English, but in all of
the world’s approximately 7,000 languages. Since
collecting and annotating task-specific parallel mul-
timodal data in all languages is impractical, a
framework that makes vision-language models gen-
eralize across languages is highly desirable.

One technique that has shown promise to greatly
improve the applicability of NLP models to new
languages is zero-shot cross-lingual transfer, where
models trained on a source language are applied

*Equal contribution.

as-is to a different language without any additional
annotated training data (Tackstrom et al., 2012;
Klementiev et al., 2012; Cotterell and Heigold,
2017; Chen et al., 2018; Neubig and Hu, 2018). In
particular, recent techniques for cross-lingual trans-
fer have demonstrated that by performing unsuper-
vised learning of language or translation models
on many languages, followed by downstream task
fine-tuning using only English annotation, models
can nonetheless generalize to a non-English lan-
guage (Wu and Dredze, 2019a; Lample and Con-
neau, 2019; Huang et al., 2019a; Artetxe et al.,
2020; Hu et al., 2020). This success is attributed to
the fact that many languages share a considerable
amount of underlying vocabulary or structure. At
the vocabulary level, languages often have words
that stem from the same origin, for instance, “desk”
in English and “Tisch” in German both come from
the Latin “discus”. At the structural level, all lan-
guages have a recursive structure, and many share
traits of morphology or word order.

For cross-lingual transfer of vision-language
models, the visual information is clearly an essen-
tial element. To this end, we make an important yet
under-explored step to incorporate visual-textual re-
lationships for improving multilingual models (De-
vlin et al., 2019; Artetxe et al., 2020). While spo-
ken languages could be different, all humans share
similar vision systems, and many visual concepts
can be understood universally (Sigurdsson et al.,
2020; Zhang et al., 2020). For example, while o
is termed “cat” for an English speaker and “chat”
for a French speaker; they understand % similarly.
We leverage this observation to learn to associate
sentences in different languages with visual con-
cepts for promoting cross-lingual transfer of vision-
language models.

In this work, we focus on multilingual text-to-
video search tasks and propose a Transformer-
based video-text model to learn contextual mul-



tilingual multimodal representations. Our vanilla
model yields state-of-the-art performance in multi-
lingual text—video search when trained with multi-
lingual annotations. However, under the zero-shot
setting, rather surprisingly, there is a significant
performance gap between English and non-English
queries (see §5.5 for details). To resolve this prob-
lem, motivated by recent advances in large-scale
language model (Artetxe et al., 2020) and multi-
modal pre-training (Lu et al., 2019; Miech et al.,
2019; Patrick et al., 2020), we propose a multi-
lingual multimodal pre-training (MMP) strategy
to exploit the weak supervision from large-scale
multilingual text-video data. We construct the
Multilingual-HowTo100M dataset, that extends the
English HowTol100M (Miech et al., 2019) dataset
to contain subtitles in 9 languages for 1.2 million
instructional videos.

Our method has two important benefits. First,
compared to pre-training on English-video data
only, pre-training on multilingual text-video data
exploits the additional supervision from a variety
of languages, and therefore, enhances the search
performance on an individual language. Second,
by exploiting the visual data as an implicit “pivot”
at scale, our methods learns better alignments in
the multilingual multimodal embedding space (e.g.,
“cat”-®#-“chat”), which leads to improvement in
zero-shot cross-lingual transfer (e.g., from “cat’-
= o “chat”—ﬂ) of vision-language models.

In our experiments on VIT (Xu et al., 2016)
and VATEX (Wang et al., 2019), our method
yields state-of-the-art English—video search per-
formance. For zero-shot cross-lingual transfer, the
proposed multilingual multimodal pre-training im-
proves English-video pre-training by 2 ~ 2.5 in av-
erage R@1 across 9 languages. Additionally, when
trained with in-domain multilingual annotations as
other baselines, our method outperforms them by a
large margin in multilingual text—video search on
VATEX and text—image search on Multi30K (EI-
liott et al., 2016).

To summarize, we make the following contribu-
tions: (1) We propose a transformer-based video-
text model that learns contextual multilingual mul-
timodal representations (§3.1). (2) We empirically
demonstrate that vision-language models, unlike
NLP models, have limited zero-shot cross-lingual
transferrability. (§5.5). (3) We introduce the multi-
lingual multimodal pre-training strategy and con-
struct a new Multi-HowTo100M dataset (§4) for

pre-training to improve zero-shot cross-lingual ca-
pability of vision-language models. (4) We demon-
strate the effectiveness of our approach, by achiev-
ing state-of-the-art multilingual text— video search
performance in both the zero-shot (§5.5) and fully
supervised setup (§5.6).

2 Related Work

Cross-lingual representations. Early work on
learning non-contextual cross-lingual representa-
tions used either parallel corpora (Gouws and
Sggaard, 2015; Luong et al., 2015) or a bilin-
gual dictionary to learn a transformation (Faruqui
and Dyer, 2014; Mikolov et al., 2013). Later ap-
proaches reduced the amount of supervision using
self-training (Artetxe et al., 2017). With the ad-
vances in monolingual transfer learning (McCann
et al., 2017; Howard and Ruder, 2018; Peters et al.,
2018; Devlin et al., 2019), multilingual extensions
of pre-trained encoders have been proven effective
in learning deep contextual cross-lingual represen-
tations (Eriguchi et al., 2017; Lample and Conneau,
2019; Wu and Dredze, 2019b; Siddhant et al., 2020;
Pires et al., 2019; Pfeiffer et al., 2020). We extend
prior work to incorporate visual context.
Video-text representations. The HowTol0OM
dataset (Miech et al., 2019) has attracted signif-
icant interest in leveraging multimodal pre-training
for text—video search (Korbar et al., 2020), cap-
tioning (Iashin and Rahtu, 2020), and unsuper-
vised translation via image-based (Suris et al.,
2020; Huang et al., 2020b) and video-based (Sig-
urdsson et al., 2020) alignment. This work stud-
ies a challenging and unexplored task: Zero-shot
cross-lingual transfer of vision-language models.
Unlike prior image/video-text work that utilizes
RNN (Dong et al., 2019; Chen et al., 2020a; Burns
et al., 2020; Kim et al., 2020) and inter-modal con-
trastive objectives (Sigurdsson et al., 2020; Liu
et al., 2019; Huang et al., 2019b; Patrick et al.,
2021), we employ Transformers to learn contex-
tual multilingual multimodal representations and
uniquely models cross-lingual instances. Moreover,
we build Multi-HowTo100M, the largest text-video
dataset for multilingual multimodal pre-training.
Cross-lingual Transfer. Cross-lingual transfer has
proven effective in many NLP tasks including de-
pendency parsing (Schuster et al., 2019), named
entity recognition (Rahimi et al., 2019), sentiment
analysis (Barnes et al., 2019), document classifi-
cation (Schwenk and Li, 2018), and question an-



o)
a man performs —»
shot put I mBeRT N TP )

x ey Cx '\

Cross-lingual \
O
un hombre realiza 4—%Jlnter-modal
y
lanzamiento de bala— bl W o(y)

y €y

Contrastive attraction ———><€<——

¥. Intra-modal 1

.Cx|v

Transformer Pooling
(TP) e,

o Cv

ey v

Contrastive repulsion = €-rwreeeeeess >

Figure 1: The proposed video-text model for learning contextual multilingual multimodal representations. We
utilize intra-modal, inter-modal, and conditional cross-lingual contrastive objectives to align (z, v, y) where x
and y are the captions or transcriptions in different languages of a video v. TP: Transformer pooling head.

swering (Lewis et al., 2020; Artetxe et al., 2020).
Recently, XTREME (Hu et al., 2020) was proposed
to evaluate the cross-lingual transfer capabilities of
multilingual representations across a diverse set of
NLP tasks and languages. However, a comprehen-
sive evaluation of multilingual multimodal models
on zero-shot cross-lingual transfer capabilities is
still missing. To our best knowledge, we are the
first work that investigates and improves zero-shot
cross-lingual transfer of vision-language models.

3 Method

We consider the problem of learning multilingual
multimodal representations from a corpus C of
video-text pairs {(;,v;)}$_, where v; is a video
clip and x; is its corresponding text (caption or
transcription) that is written in one of K languages.
Our goal is to learn a shared multilingual text en-
coder ¢; = ®(x) and a video encoder ¢, = ¥(v),
both of which project the input to a shared D-
dimensional embedding space c,, ¢; € RP, where
semantically similar instances (i.e., paired (x;,v;))
are closer to each other than the dissimilar ones
(i.e., (z4,v),i # 7). In the following, we de-
note a batch of multilingual text-video samples
as B = {(z;,v;)}2,} where B C C.

3.1 Multilingual Multimodal Transformers

Figure 1 gives an overview of the proposed method.
Our text encoder consists of a multilingual Trans-
former (e.g. multilingual BERT (Devlin et al.,
2019)) and a text Transformer pooling head (ex-
plained below). Similarly, our video encoder con-
sists of a 3D-CNN (e.g. R(2+1)D network (Tran
et al., 2018)) and a video Transformer pooling head.
We use these multilingual multimodal Transform-
ers to encode text and video for alignment.

Unlike prior multilingual text-image mod-
els (Gella et al., 2017; Kim et al., 2020; Huang

et al., 2019b) that utilize word embeddings and
RNNSs, our multilingual text encoder is built on a
multilingual Transformer that generates contextual
multilingual representations e, € RY*? to encode
a sentence x containing /N words. We employ an
additional 2-layer Transformer which we will call
a “Transformer pooling head (TP)” as it serves as
a pooling function to selectively encode variable-
length sentences and aligns them with the corre-
sponding visual content. We use the first output
token of the second Transformer layer as the final
sentence representation. Precisely, we set ¢; =
Trans(” (query=key=value=e)[0] where Trans!?
is a 2-layer stack of Transformers (Vaswani et al.,
2017) with e, as the (query,key,value) in the multi-
head attention. Note that we use the same text
encoder to encode sentences in all languages.

For encoding videos, our model uses pre-trained
3D-CNNs that encode spatial-temporal context
in a video. For a M-second video v, we apply
R(2+1)D (Tran et al., 2018) and S3D (Miech et al.,
2020) networks to its frames, concatenate network
outputs, and apply a linear layer to encode the vi-
sual input, e, € RM*D 6 our model. Similarly to
the text part, we employ a two-layer Transformer
as the pooling head to encode videos with different
lengths into fixed-length representations. Formally,
we set ¢, = Trans$,2)(query=keyzvalue:ev)[0].
Since videos are typically long and have a high
frame rate (e.g., 30 fps), it is infeasible to update
3D-CNNs simultaneously and therefore, we use
pre-extracted video features. Our model is parame-
terized by € = OmperT U OTrans, U OTrans, -

3.2 Multilingual Text-Video Alignment

For learning multimodal representations, the com-
mon practice is to minimize a contrastive objective
to map the associated (video, text) embeddings



to be near to each other in a shared embedding
space. The inter-modal max-margin triplet loss has
been widely studied in video-text (Yu et al., 2018;
Liu et al., 2019) and image-text (Kim et al., 2020;
Burns et al., 2020; Huang et al., 2019b) research. In
this work, we generalize and model all inter-modal,
intra-modal, and cross-lingual instances with a
noise contrastive estimation objective (NCE) (Gut-
mann and Hyvérinen, 2010; van den Oord et al.,
2018; Chen et al., 2020b).

Inter-modal NCE. Let X and V denote the subsets
of the sampled sentences in multiple languages and
videos in B, respectively. And let s(a,b) = %
be the cosine similarity measure. We use an (inter-
modal) NCE objective defined as:

B
L Y) = 5 > ToglF(®(x), W(wy)), (1)
=1

where

6s(cgg,cv)

es(czicv) + E(x’,v’)w/\f eS(cyr,cyr)

(2)
In inter-modal NCE, £"f = £(X, V), the noise
N is a set of “negative” video-text pairs sampled to
enforce the similarity of paired ones are high and
and those do not are low. Following Miech et al.
(2020), we set the negatives of (z;,v;) as other z;
and vj,j # iin B.

ENCE (

Cx, Cv) =

Intuitively, inter-modal NCE draws paired (se-
mantically similar) instances closer and pushes
apart non-paired (dissimilar) instances. Note that
we do not distinguish language types in X" and the
sentences in all possible languages will be drawn
towards their corresponding videos in the shared
multilingual text-video embedding space.
Intra-modal NCE. Beyond cross-modality match-
ing, we leverage the intra-modal contrastive ob-
jective to learn and preserve the underlying struc-
ture within the video and text modality. For exam-
ple, Corgi should be closer to Husky than Balinese.
Prior image-text work (Gella et al., 2017; Huang
et al., 2019c¢) utilizes a triplet loss to maintain such
neighborhood relationships. Inspired by recent suc-
cess in self-supervised image and video represen-
tation learning (Yalniz et al., 2019; Ghadiyaram
et al., 2019), our model leverages intra-modal NCE
that constrains the learned representations to be
invariant against noise and to maintain the within-
modality structure simultaneously. We minimize

the following intra-modal NCE loss:
Eintra — L(X,/Ym) +£(V, Vm)7 (3)

where A" and V™ are the noised version of the
original sentences and videos. For noising, we
randomly mask 5% of the multilingual text tokens
and video clips. We optimize our model by

m@in ﬁinter + Lintra (4)

3.3 When Visually-Pivoted Multilingual
Annotations Are Available

In many multilingual multimodal datasets, there
are sentences in different languages that describe a
shared visual context. For example, 10 English and
10 Chinese descriptions are available for each video
in VATEX. With these visually-pivoted (weakly
paralleled) sentences (z, y), we further revise the
contrastive objectives to leverage this additional
supervisory signal. Given a visually-pivoted cor-
pus CP that contains all possible combination of
visually-pivoted pairs {(z;, v;, yi)}iczpo, we sample
batches B? = {(w;,vi,yi)}20,, B” C CP and re-
vise the contrastive objective as:

LT — £(X, V) + LY, V) (5)
LN = L(X,X™) + LV, V™) + LV, V™)
(©)

Visual-pivoted Cross-lingual NCE. Inspired
by Translation Language Modeling (TLM) in
XLM (Lample and Conneau, 2019), we propose a
multimodal TLM-like contrastive objective which
promotes alignments of descriptions in different
languages that describe the same video. We use the
intuition that conditioned on a video, the descrip-
tions (need not to be translation pairs) in different
languages would likely be semantically similar. To
this end, we set the cross-lingual NCE as:

L = L(X|V,V|V) (7)

For visually-pivoted sentences, as shown in
Fig. 1, we generate their representations condi-
tioned on the video they describe. We extend the
key and value of multihead attention with the addi-
tional visual content e, and generate new c¢,|,, and
¢y|, for matching. Specifically, our model employs

Cofy = Trans'>) (query=e,, key=value=e,||e,)[0].
With the access to (visually-pivoted) multilingual

annotations, we optimize our model by

Hbil’l [’inter + L:intra + [CTOss (8)
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Figure 2: Video clips and the corresponding multilingual subtitles in Multi-HowTo100M.

At the inference time, we simply apply ¢, =
®(x) and ¢, = ¥(v) to encode multilingual text
queries and videos. For text-to-video search, we
sort videos according to their cosine similarity
scores to the text query.

4 The Multilingual HowTo100M Dataset

As large-scale pre-training has been shown im-
portant in recent NLP and vision-language mod-
els, we construct the Multilingual HowTo100M
dataset (Multi-HowTo100M) to facilitate research
in multilingual multimodal learning. The origi-
nal HowTo100M (Miech et al., 2019) dataset is a
large-scale video collection of 1.2 million instruc-
tional videos (around 138 million clips/segments)
on YouTube, along with their automatic speech
recognition (ASR) transcriptions as the subtitles.
For each video in HowTo100M, we crawl and col-
lect the multilingual subtitles provided by YouTube,
which either consist of user-generated subtitles or
those generated by Google ASR and Translate in
the absence of user-generated ones. Essentially,
we collect video subtitles in 9 languages: English
(en), German (de), French (fr), Russian (ru), Span-
ish (es), Czech (cz), Swahili (sw), Chinese (zh),
Vietnamese (vi).

At the time of dataset collection (May 2020),
there are 1.1 million videos available, each with
subtitles in 7-9 languages. The video length ranges
from 1 minute to more than 20 minutes. We utilize
Multi-HowTo100M for multilingual multimodal
pre-training to exploit the weak supervision from
large-scale multilingual text-video data. In Fig. 2,
we provide a visualization of few instances sam-
pled in Multi-HowTo100M with the corresponding
video frame, timestamp, and transcriptions in differ-
ent languages. Please refer to Appendix for more
details and dataset statistics.

5 Experiment

In this section, we first describe our experimental
setup (§5.1-5.3). In §5.4, we conduct ablation stud-
ies to validate the effectiveness of proposed multi-
lingual text-video model . With the best models at
hand, we investigate their zero-shot cross-lingual
transferability in §5.5, where we showcase that
the proposed multilingual multimodal pre-training
serves as the key facilitator. We then verify the
superior text—video search performance of our
method under the monolingual, multilingual, and
cross-modality settings in §5.6.

5.1 Evaluation Datasets

MSR-VTT (VTT) (Xu et al., 2016) contains
10K videos, where each video is annotated with
20 captions. Additionally, we created pseudo-
multilingual data by translating the English cap-
tions into 8 languages with off-the-shelf machine
translation models.! We use the official training set
(6.5K videos) and validation set (497 videos). We
follow the protocol in Miech et al. (2019); Liu et al.
(2019) which evaluates on text—video search with
the 1K testing set defined by Yu et al. (2018).
VATEX (Wang et al., 2019) is a multilingual (Chi-
nese and English) video-text dataset with 35K
videos. Five (en,zh) translation pairs and five non-
paired en and zh descriptions are available for
each video. We use the official training split (26K
videos) and follow the testing protocol in Chen
et al. (2020a) to split the validation set equally into
1.5K validation and 1.5K testing videos.
Multi30K (Elliott et al., 2016) is a multilingual ex-
tension of Flickr30K (Young et al., 2014). For each
image, there are two types of annotations available:
(1) One parallel (English,German,French,Czech)
translation pair and (2) five English and five Ger-

"https://marian-nmt.github.io/



man descriptions collected independently. The
training, validation, and testing splits contain 29K,
1K, and 1K images respectively.

5.2 Implementation Details

For the video backbone, we use a 34-layer,
R(2+1)-D (Tran et al., 2018) network pre-trained
on IG65M (Ghadiyaram et al., 2019) and a
S3D (Miech et al., 2020) network pre-trained on
HowTol00M. We pre-extract video features and
concatenate the two 3D-CNN outputs to form
ey € RMX1024 a5 3 video input.

For the text backbone, we use multilingual BERT
(mBERT) (Devlin et al., 2019) or XLLM-Roberta-
large (XLM-R) (Artetxe et al., 2020), where the
latter achieves near SoTA zero-shot cross-lingual
transfer performance for NLP tasks. Following Hu
et al. (2020), instead of using the top layer, we
output the 12-th layer in XLLM-R and mBERT. For
vision-language tasks, we freeze layers below 9 as
this setup empirically performs the best.

Our model employs a 2-layer Transformer with
4-head attention for the text and video transformer
pooling (TP) modules. The embedding dimension
D is set to 1024. We use the Adam (Kingma and
Ba, 2015) optimizer and a 0.0002 learning rate to
train our model for 16 (pre-training) and 10 (fine-
tuning) epochs. The softmax temperature in all
noise contrastive objectives is set to 0.1.

5.3 Experimental Setup

We use Multi-HowTo100M for multilingual mul-
timodal pre-training (MMP). For each video, we
randomly sample the start and end time to con-
struct a video clip. For a video clip, we randomly
sample one language type each time from 9 lan-
guages and use the consecutive ASR transcriptions
that are closest in time to compose (text-video)
pairs for training. For simplicity and speed pur-
poses, we follow the training protocol of XLM-
R to pre-train on a multilingual corpus wihtout
using translation pairs, i.e., we use multilingual
text-video pairs (z, v) but no translation pairs from
Multi-HowTo100M and utilize only inter- and intra-
modal NCE (Eq. 1-3) for MMP.

We fine-tune our model on VTIT, VATEX, and
Multi30K to evaluate on text—video search tasks.
In the zero-shot cross-lingual transfer experiments,
we use only English-video data and fine-tune with
Eq. 1-3. We then test the model with non-English
queries. When annotations in additional languages
are available (by humans in VATEX and Multi30K;

Text-B Video-B R@11 R@51 R@101

XLM-R _S3D 195 490 6238
XLM-R R2+1)D 19.0 495 632
XLM-R R+S 210 50.6 63.6
mBERT R+S 199 498 625

Table 1: Text and Video (B)ackbone comparison.

T layers V layers R@11T R@51 R@107

1 1 200 503 632
2 1 20.1 505 63.8
2 2 21.0 50.6 63.6
2" 2" 20.7 505 633
4 4 20.8 504  63.8

Table 2: Architecture comparison. Number of multi-
lingual multimodal transformer layers. “:Weight shar-
ing between video and text transformers.

Objective Inter Intra Cross R@11 R@51 R@101
Triplet v 133 360 552

Triplet vV 209 493  63.0
NCE v 214 493  61.1
NCE v Vv 21.0 506 63.6
NCE® v V 213 507 635
NCE® v v v 215 510 638

Table 3: Objective comparison. *Training with addi-
tional machine translated de-video and fr-video pairs.

by MT models (i.e., translate-train) in VTT),
we utilize all available multilingual annotations
(i.e., fully supervised) and iterate over all possible
(z,v,y) pairs to train with Eq. 5-7 to demonstrate
the strong performance target for evaluating zero-
shot cross-lingual transfer on VIT and to com-
pare fairly with other fully-supervised baselines
in multilingual text—video search on VATEX and
Multi30K. We report the standard recall at k£ (R@Fk)
metrics (higher is better).

5.4 Comparison Experiments and Ablations

In this section, we ablate and compare different
text/video encoders, Transformer model architec-
tures, and learning objectives for English—video
search on VTT.

Text and Video Encoders. Table 1 compares dif-
ferent text and video encoder backbones. For the
visual encoders, while R(2+1)D outperforms S3D,
the simple concatenation (i.e., early-fusion) of their
output features provides a 1.5 ~ 2.0 improvement
in R@1. For the text encoder, XLM-R significantly
outperforms mBERT.

Transformer Pooling. Table 2 compares various
configurations of the proposed Transformer pool-
ing module. We observe that a simple 2-layer
Transformer achieves the best performance. Weight



Model en de fr cs zh U vl sw es Avg?t
mBERT 199 11.1 11.6 8.2 6.9 79 2.7 1.4 12.0 9.1

mBERT-MP 206 11.3 119 8.0 7.1 7.7 2.5 1.1 12.5 9.2

mBERT-MMP 21.8 150 158 112 8.4 11.0 3.7 3.4 15.1 11.7
XLM-R 21.0 163 174 160 149 154 7.7 5.7 17.3 14.7
XLM-R-MP 233 174 185 17.1 163 170 8.1 62 185 158
XLM-R-MMP 238 194 20.7 193 182 191 8.2 84 204 175
mBERT + translated VT T 196 182 18.0 169 162 165 84 130 185 16.1
mBERT-MMP + translated VIT 21.5 19.1 198 183 173 183 89 141 200 174
XLM-R + translated VTT 215 19.6 20.1 193 189 191 103 125 189 178
XLM-R-MMP + translated VIT 23.1 21.1 21.8 20.7 200 205 109 144 219 194

Table 4: Recall@1 of multilingual text— video search on VTT. Upper:

Zero-shot cross-lingual transfer. Lower:

Performance with synthesized pseudo-multilingual annotations for training. MMP: multilingual multimodal pre-
training on Multi-HowTo100M. MP: Multimodal (English-Video) pre-training on HowTo100M.
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Figure 3: R@1 trends in languages used for multilin-
gual multimodal pre-training. Left: English—video
search. Right: Zero-shot German—video search.

sharing of the video and text Transformer slightly
degrades the performance. Therefore, we choose
to separate them.

Learning Objective. From Table 3, the intra-
modal contrastive objective is important for both
NCE and Triplet loss. In general, the NCE loss
outperforms the Triplet loss. The proposed inter-
modal and intra-modal NCE objective achieves the
best performance. When captions in multiple lan-
guages are available, cross-lingual NCE addition-
ally provides a consistent improvement.

5.5 VTT Zero-Shot Cross-Lingual Transfer

Table 4 shows the multilingual text—video search
results on VTT. With the best English-video mod-
els at hand (with either mBERT or XLM-R as the
text backbone), we first investigate how well these
models transfer to other non-English languages
under the zero-shot setting. We then analyze the
benefit of the proposed multilingual multimodal
pre-training.

The upper section shows the zero-shot results.
Unlike cross-lingual transfer in NLP tasks, employ-
ing multilingual Transformers in vision-language
tasks apparently does not generalize well across
languages. For example, there is a significant
drop in R@1 (19.9—11.1 (-44%) with mBERT,

21.0—16.3 (-24%) with XLM-R) when directly ap-
plying English-finetuned model to German—video
search. For comparison, there is only a -10% degra-
dation for XLM-R on en — de cross-lingual trans-
fer in XNLI (Conneau et al., 2018). Multimodal
(English-video) pre-training (MP) on HowTo100M
only improves average R@1 (+0.1 or mBERT and
+1.1 for XLM-R) compared to model-from-scratch.
In contrast, our proposed multilingual multimodal
pre-training (MMP) is shown to be the key facilita-
tor for zero-shot cross-lingual transfer. MMP im-
proves German— Video search (11.1—15.0, +35%
for mBERT, and 16.3—19.4, +20% for XLM-R)
and achieves 2.6 ~ 2.8 improvement in average
R@1. We attribute the effectiveness of MMP to
learning improved alignments between multilin-
gual textual and visual context in the shared embed-
ding space, as relatively balanced improvements
between English—video and non-English—video
is observed with fine-tuning.

Fig. 3 demonstrates the trend of R@1 while
incrementally incorporating additional languages
for MMP. For XLM-R, the improvement in R@1
asymptotically converges when pre-training with
more multilingual text-video pairs. On the other
hand, for zero-shot German—video search, pre-
training with more languages keeps improving the
search performance, even though the additional
language (e.g., French) is different from the target
language (i.e., German).

The lower section of Table 4 shows the results
of models fine-tuned with (synthesized) pseudo-
multilingual annotations. It can be regarded as
the translate-train scenario, which serves as a
strong performance target for evaluating zero-shot
cross-lingual transfer, as discussed in (Lample and
Conneau, 2019; Hu et al., 2020). Both mBERT
and XLM-R yield better performance across non-
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Figure 4: Qualitative multilingual (en, ru, vi, zh) text—video search results on VTT.

English languages with the in-domain translated
pseudo-multilingual annotations. However, for
English—video search, a 0.7 degradation is ob-
served compared to the zero-shot setting. It is
likely due to the noise in the translated captions.
Notably, there is still a performance gap between
zero-shot and translate-train settings for models
with mBERT. In contrast, the gap is much smaller
for models with XLM-R. In the following sections,
we refer Our s—MMP as our best model with XLM-
R as the text backbone and compare it with other
state-of-the-art methods.

Qualitative Results Fig. 4 shows the multilin-
gual text—video search results with Ours-MMP
(VTT:en-only) on VTT under the zero-shot setup.
Note that only one shared English-finetuned model
is used for text—video search in all languages. As
demonstrated, the proposed model successfully re-
trieves the correct videos with English (en) and Rus-
sian (ru) queries. The other top-ranked videos also
share similar visual appearance to the correct one.
For zero-shot transferring of the English-finetuned
model to distant languages such as Vietnamese
(vi) and Chinese (zh), we observe that there is still
limitation for our zero-shot models to understand
abstract concepts (e.g., “space project”) and asso-
ciate small objects (e.g., “microphone”) with the
text queries in distant languages.

5.6 Comparison to Supervised State of the
Art

English— Video Search on VIT. Table 5 shows
the comparison of English—video models on VTT.
For a fair comparison to other baselines, our model
fine-tunes only with the original English annota-
tions on VTT. The results show that our model out-
performs other baselines by a large margin. Specif-
ically, our model achieves 8.9 R@1 improvement
over the original HowTo100M model (Miech et al.,
2019) and other recent baselines with pre-training
on HowTo100M. Using a smaller set of visual fea-

Model R@1T R@5F R@10T
JSFusion (Yu et al., 2018) 10.2 31.2 432
JPoSE (Wray et al., 2019) 14.3 38.1 53.0
VidTrans' (Korbar et al., 2020) 14.7 — 52.8
HT100M' (Miech et al., 2019) 14.9 40.2 52.8
Noise! (Amrani et al., 2020) 17.4 41.6 53.6
CE? (Liu et al., 2019) 20.9 48.8 62.4

Ours(VTT:en-only) 21.0 506 63.6
Ours-MMP (VTT:en-only) 23.8 52,6 65.0

Table 5: English—video search performance on VTT.
1: Models with pre-training on HowTo100M.

English to Video Chinese to Video

Model R@11T R@51 R10T R@1T R@51 R@101
VSE (Kiros et al., 2014) 280 643 769 - - -
VSE++ (Faghri et al., 2018) 337 70.1 81.0 - - -
Dual (Dong et al., 2019) 31.1 674 789 - - -
HGR (Chen et al., 2020a) 35.1 735 835 - - -
Ours (VATEX:en-only) 435 79.8 88.1 239 55.1 67.8

88.7 297 632 755
889 405 764 859

Ours-MMP (VATEX:en-only) 44.4  80.5
Ours-MMP (VATEX:en, zh) 443  80.7

Table 6: Multilingual text—video search on VATEX.

tures and training on a smaller (6,513 vs 9,000)
training set”, our model also outperforms CE (Liu
et al., 2019) with or without pre-training.
Multilingual Text— Video Search on VA-
TEX. Table 6 summarizes English—video and
Chinese—video search performance on the
VATEX dataset. Under the zero-shot setting where
we train with only English-video pairs, our model
already outperforms other baselines. However, a
clear performance gap between English—video
and Chinese—video search is observed, indicating
that cross-lingual transfer to a distant language
remains challenging even with XLM-R. With the
proposed MMP, the gap is significantly closed
by 5.8/8.1/7.7 in R@1/5/10. When in-domain
human-annotated Chinese captions are available,
the performance of our model can further be
improved for both languages and our model yields
new state-of-the-art performance.

2CE uses 9,000 videos (VTT training and part of exclusive
testing set) for training, while other baselines and our model
in Table 5 are trained on the official VTT training set which
contains 6,513 videos.



M30K  English to Image German to Image Czech to Image
Model #lang. R@11T R@51 R10T R@11 R@57 R@101T R@1T R@51 R@10T
OE (Vendrov et al., 2015) 2 258 565 678 21.0 485 604 - - -
VSE++ (Faghri et al., 2018) 2 396 691 798 313 622 709 - - -
Pivot (Gella et al., 2017) 2 262 564 684 225 493 617 - - -
FB-NMT (Huang et al., 2020a) 2 473 754 835 370 640 731 - - -
MULE (Kim et al., 2020) 4 422 722 818 351 646 753 375 646 748
SMALR (Burns et al., 2020) 10 418 724 821 369 654 754 367 68.0 782
MHA-D (Huang et al., 2019b) 2 501 78.1 857 403 70.1 79.0 - - -
Ours (M30K:en-only) 1 484 783 859 314 611 726 332 652 76.1
Ours-MMP (M30K:en-only) 1 500 792 868 338 633 747 379 688 782
Ours-MMP (M30K:en, de, cs, fr) 4 516 801 873 451 756 850 466 759 834

Table 7: Multilingual text—image search on Multi30K. MMP: Multilingual multimodal pre-training.

Cross-Modality Transfer to Multi30K: From
Video-Text to Image-Text. To extend our study
on zero-shot cross-lingual transfer for image-text
tasks, we investigate the feasibility of transferring
our video-text model across modalities. We replace
the 3D-CNN in the original video-text model with
a 2D-CNN to encode the image. In practice, fol-
lowing MHA-D (Huang et al., 2019b), we utilize
the Faster-RCNN (Ren et al., 2015) pre-trained in
Visual Genome (Krishna et al., 2016) to extract
regional visual features. Essentially, an image is
encoded as e, = RM*H where M = 36 is the
maximum number of visual objects in an image.
For models with MMP, we initialize their weights
with the model pre-trained on Multi-HowTo100M.
To tackle the feature mismatch between 2D-CNN
and 3D-CNN, we leverage a linear layer with a
doubled learning rate to map 2D-CNN features to
the same dimension as 3D-CNN features.

Table 7 shows the results on Multi30K. For
zero-shot cross-lingual transfer, when trained
from scratch (M30K:en-only), our model achieves
comparable performance to MHA-D but lags in
German—image search since it only uses En-
glish annotations. In Ours-MMP, pre-training
improves all recall metrics even with modality
gap. The average R@1 improvement is 3.2.
A larger gain for (relatively) low-resource lan-
guage such as Czech is observed. Without us-
ing any Czech annotations, our zero-shot model
with MMP achieves comparable Czech—image
search performance to SMALR (Burns et al.,
2020), which uses 10 languages including Czech.
However, when transferring across modalities
and using only English annotations, there are
performance gaps between English—Image and
German/Czech—Image search, implying that trans-
ferring models across modalities is feasible but
remains challenging. We consider zero-shot cross-
modal cross-lingual transfer as our future work.

For a fair comparison with other baselines, when
trained with annotations in all 4 languages pro-
vided by Multi30K, our model greatly outper-
forms all baselines by large margins in multilingual
text—image search.

6 Conclusion

We have presented a multilingual multimodal pre-
training (MMP) strategy, the Multi-HowTo100M
dataset, and a Transformer-based text-video model
for learning contextual multilingual multimodal
representations. The results in this paper have
convincingly demonstrated that MMP is an essen-
tial ingredient for zero-shot cross-lingual transfer
of vision-language models. Meanwhile, there are
many remaining challenges, such as resolving the
performance gap between zero-shot and training
with in-domain non-English annotations; as well as
techniques to transfer varieties of vision-language
models (e.g., VQA (Goyal et al., 2017), TVQA (Lei
et al., 2020)) or visually-enhanced NLP models
such as unsupervised multimodal machine transla-
tion (Huang et al., 2020b). We believe the proposed
methodology, and the corresponding resources we
release, will be an important first step towards
spurring more research in this direction.
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A Appendix Overview

The Appendix is organized as follows: First we pro-
vide details about the Multilingual HowTo100M
(Multi-HowTo100M) dataset for multilingual multi-
modal pre-training (MMP) in §B. Then we provide
additional implementation details and experiment
setup in §C. Additional ablation studies regarding
choices of Transformer architecture are discussed
in §D. Then we present additional cross-dataset
transfer experiments in §E.

B The Multilingual HowTo100M Dataset

In this section we provide the detailed statis-
tics of the Multilingual HowTolO0M (Multi-
HowTol00M) dataset. We also provide a com-
parison to Sigurdsson et al. (2020) that also uses
HowTo100M for unsupervised word translation.

The Multi-HowTol100M dataset is built upon
the original English HowTo100M dataset (Miech
et al., 2019) that contains 1.2 million instructional
videos (138 million clips) on YouTube. We reuse
the raw English subtitles in HowTo100M, where
the subtitles in HowTo100M are either automatic
speech recognition (ASR) transcriptions or user
generated subtitles.

For Multi-HowTo100M, we use the same video
collection as English HowTol100M. At the time of
data collection (May 2020), there were 1.09 million
videos accessible. We collect the subtitles provided
by YouTube, which either consist of user-generated
subtitles or those generated by Google ASR and
Translate in the absence of user-generated ones. Es-
sentially, we collect video subtitles in 9 languages:
English (en), German (de), French (fr), Russian
(ru), Spanish (es), Czech (cz), Swahili (sw), Chi-
nese (zh), Vietnamese (vi). Table 8 summarizes the
dataset statistics for each language. In most cases
there are more than 1 billion tokens a language.

Fig. 5 further shows the number of tokens per
video. There are typically lengthy narrations that
contains several hundreds of tokens available in
each instructional video. Fig. 6 shows the distri-
bution of number of tokens in a subtitle. For each
subtitle segment, which ranges from 0~20 seconds,
there are typically 15~25 words. The most of the
cases, subtitles are well aligned in time for non-
English languages. Fig. 2 visualizes a few exam-
ples in Multi-HowTo100M.

A similar HowTol00M variant has been re-
cently reported in MUVE (Sigurdsson et al., 2020)
that is created for unsupervised word translation.

Language videos #subtitle #tokens

English 1238911 138429877 1.18B
German 1092947 69317890 1.26B
French 1093070 69399097 1.33B
Czech 1092717 68911940 1.22B
Russian 1092802 69117193 1.25B
Chinese 1092915 68939488 0.94B
Swabhili 1092302 68898800 1.22B
Vietnamese 1092603 68887868 1.13B
Spanish 1092649 70143503 1.16B

Table 8: Multi-HowTo100M statistics

Our Multi-HowTo100M differs from MUVE in
the following perspectives: First, we collects 9
language for all videos in HowTol00M while
MUVE only has 4 languages available (English,
French, Japanese, and Korean) on HowTol100M.
Also, MUVE divided HowTo100M into 4 non-
overlapped sections for each language, there are
no parallel pairs for each subtitle. While in Multi-
HowTo100M, there are 7-9 languages for each sub-
title. Essentially, There are more than 1 billion
tokens in most languages in Multi-HowTo100M.
To our best knowledge, our Multi-HowTo100M
dataset is currently the largest multilingual text-
video collection.

Beyond scale, instructional videos in Multi-
HowTo100M are feasible pre-training resources
for many downstream vision-language models.
Demonstrators in instructional videos typically per-
form intentionally and explain the visual object
or action explicitly. According to the inspection
by (Miech et al., 2019), for around 51% of clips, at
least one object or action mention in the caption can
be visually seen. Prior work has shown that instruc-
tional videos are useful for event recognition (Yu
et al., 2014), action localization model (Alayrac
et al., 2016), cross-modal alignments (Malmaud
et al., 2015). We expect the previous success in the
intersection of natural language processing (NLP)
and computer vision (CV) could be further trans-
lated into more languages to have a broaden impact.

The are great potentials of using our Multi-
HowTo100M dataset in related research field such
as multilingual multimodal representation learn-
ing (Huang et al., 2019b; Kim et al., 2020; Burns
et al., 2020), multilingual multimodal transla-
tion (Huang et al., 2020b; Suris et al., 2020), mul-
tilingual image/video captioning (Miyazaki and
Shimizu, 2016) ... etc. We expect the release of
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Figure 5: Distribution of #tokens/video in Multi-
HowTol100M

Figure 6: Distribution of #tokens/subtitle in Multi-
HowTol100M

Multi-HowTo100M will be a first step towards
spurring more research in these directions.

C Implementation and Experiment
Details

Pre-Processing. For pre-possessing, we truncate
the maximum length N of text to 192 for pre-
training on Multi-HowTol00M. The maximum
length is set to 96 for fine-tuning VTT (Xu
et al., 2016), VATEX (Wang et al., 2019) and
Multi30K (Elliott et al., 2016). The maximum
video length M is set to 128 for pre-training on
Multi-HowTo100M and 36 for all fine-tuning tasks.

Model Architecture. For the multilingual Trans-
formers, either multilingual BERT (Devlin et al.,
2019) or XLM-R-large (Artetxe et al., 2020), we
use the pre-trained version provided by Hugging-
Face. 3 and use their corresponding tokenizers for
tokenization. Detailed design choices regarding
output layer and frozen layer is discussed in §D.
For the video backbone, we use a 34-layer,
R(2+1)-D (Tran et al., 2018) network pre-trained
on IG65M (Ghadiyaram et al., 2019) and a
S3D (Miech et al., 2020) network pre-trained on
HowTol00M (Miech et al., 2019). We apply a
spatial-temporal average pooling over the last con-
volutional layer, resulting in a 512-dimensional
vector for each 3D CNN network. We extract vi-
sual features at a rate of 1 feature per second. Since
the 3D CNNs employs different size of input win-
dows (e.g., 8 frames for R(2+1)D and 16 for S3D),

3https://github.com/huggingface/transformers

we re-sample videos to 30 fps and employs a win-
dow of size 8 or 30 that takes consecutive frames
starting from the beginning of every second for en-
coding. We simply concatenate the two 3D-CNN
outputs and use the 1024-dimension vector as the
visual input stream to our model. Notably, instead
of using 9 different types of visual features as in CE
(Liu et al., 2019), we use only the above 2 features
and achieve superior performance.

For the Transformer pooling head (TP) modules,
we use a 2-layer Transformer with 4-head attention
for each TP. The embedding dimension D is set
to 1024. We do not use the positional embeddings
in both text and video TP as we do not find them
beneficial in our experiments. The softmax temper-
ature in all NCE contrastive objectives is set to 0.1
as used in SimCLR (Chen et al., 2020b).

Note that unlike VILBERT (Lu et al., 2019)
or OAN (Huang et al., 2019d), our models does
not employ cross-modality attention and keep the
multi-head self-attention within the same modality.
The main reason is to reduce the inference time
complexity. For cross-modality attention, the com-
plexity is O(T'V') to encode T text queries for V'
videos in a dataset before retrieval (since video and
query representations depend on each other). It
is clearly not scalable when the dataset contains
millions of videos. To this end, our model keep
self-attention within the same modality which re-
sults in a O(T' + V') complexity compared O(T'V)
in prior work with cross-modality attention. In our
preliminary experiments, we also incorporate cross-
modality attention and achieved 0.3~1.8 R@1 im-
provement. Considering the trade-off between per-
formance and scalability, we choose the latter.

Training and Inference Details and Profiling.
For the softmax temperature in NCE, we set to
0.1 as used in SimCLR (Chen et al., 2020b). We
use the Adam (Kingma and Ba, 2015) optimizer
with a initial learning rate 2 - 10~* and clip gra-
dients greater than 0.2 during the training phase.
Dropout rate is 0.3. Since the video length and
token length is longer in the pre-training phase, we
use a 64 batch size for pre-training. For fine-tuning,
we use a batch size of 128.

Pre-training on the 1.2 million HowTol100M
videos takes around 10 GPU hours (NVIDA V100)
for 16 epochs. We speed up the pre-training pro-
cess by distributing the workload over 8 GPUs on
a single node of our server. We use 1 GPU for the
fine-tuning or training from scratch experiments.



For the MSR-VTT split, it takes 12 GPU hours
to train our model on 180K video-text pairs for
20 epochs. For VATEX, it takes 32 GPU hours
to train on 260K video-text pairs for 30 epochs.
For inference, the encoding speed is around 250-
300 videos/sec and 200-250 text queries/sec. The
overall text—video search speed on 1,000 video-
text pairs (1,000 text queries over 1,000 videos)
is around 6 seconds including video/text encoding
and ranking their similarity scores.

Experiment Details. Our experiment consider
three types of pre-training: (1) Multilingual multi-
modal pre-training (MMP), (2) Multimodal pre-
training (MP), and (3) no pre-training (from
scratch). For (1) and (2), we pre-train 16 epochs
and use the model weight at 16-th epoch for fine-
tuning experiments.

For multimodal pre-training, we pre-train on the
original English HowTo100M dataset. We iterate
over all videos in HowTol100M. For each video, we
randomly sample the start and end time to construct
a video clip. For each clip, we locate the nearest
consecutive ASR transcriptions in time and use it
as to construct the (video, text) pair for training.

For multilingual multimodal pre-training
(MMP), we use Multi-HowTol00M for pre-
training. For each video, we follow the same
strategy as MP. For a clip, we sample one language
type each time from 9 languages and use the
consecutive ASR transcriptions that are closest in
time to compose (video, text) pairs for training.

After pre-training, we fine-tune our model on
VTT and VATEX to evaluate on text—video search
tasks. In the zero-shot cross-lingual transfer exper-
iments, we use only English-video data. We then
directly test the model with non-English queries
to report the zero-shot performance. When anno-
tations in additional languages are available (by
humans in VATEX and Multi30K; by MT models
(i.e. translate-train) in VTT), we train our model
with all available multilingual annotations (i.e. fully
supervised) to compare fairly with other baselines
in multilingual text—video search.

Since pre-trained model has a faster convergence
rate, we fine-tune for 10 epochs and use the model
with best validation performance (summation of
R@1, R@5, R@10) for testing. For models with-
out pre-training (i.e., from-scratch), we train for 20
epochs under the same training protocol.

Output layer Freeze lower en de

3 0 209 32
6 0 20.5 3.1
9 0 21.0 438
12 0 21.0 13.3
15 0 20.5 12.3
18 0 20.8 12.6
12 6 21.0 155
12 9 21.0 16.3
12 12 18.9 14.1

Table 9: Text—video R@1 of XLM-R output layers
and layers to freeze on VTT

Output layer Freeze lower en de

3 0 19.2 2.5
6 0 19.5 2.0
9 0 19.3 5.8
12 0 19.6 8.8
12 6 19.3 10.5
12 9 199 111
12 12 18.9 9.8

Table 10: Text—video R@1 of mBERT output layers
and layers to freeze on VIT

D Additional Ablation Studies

As has been investigated in XTREME (Hu et al.,
2020), choosing different output layers will affect
the zero-shot transferability of multilingual Trans-
formers in various NLP tasks. For text—video
search tasks, we conduct a series of experiments to
identify the desirable choices of hyper-parameters
in the proposed multilingual multimodal Trans-
former that lead to best performance in English-to-
video and (zero-shot) non-English-to-video search
performance. Beyond our ablation studies in Sec.
5, in this part we highlight our trials in the choice
of the output layer and the layers to be frozen in our
multilingual Transformer backbone (i.e., mnBERT
and XLM-R). There are 24 layers in XLM-R (large)
and 12 layers in mBERT. We perform grid-search
on VTT to identify the best choice of these two
hyper-parameters.

Choice of Output Layers Table 9 and Table 10
compare different choices of output layer and lay-
ers to freeze in multilingual Transformers. Our re-
sults suggest that the best output layer for mBERT
and XLM-R is the 12-th layer. Surprisingly, while
output layer does not affect English—video search
significantly, it greatly affects the zero-shot cross-
lingual transfer performance of video-text models.
For both XLM-R and mBERT, the performance
degrade significantly if fine-tuning all layers.



text—video English  Non-English

In-domain v v
Out-of-domain v

Table 11: Coverage of our experiments

Choice of Layers to Freeze Similar to output
layers, the choice of frozen layers greatly affects
cross-lingual transferability. For both mBERT and
XLM-R, it is desirable to freeze part of the lower
layers and make the top-3 layers trainable for video-
text models. We observe that when freezing all
layers (i.e., using the pre-extracted contextual mul-
tilingual embeddings) does not lead to satisfactory
results. For mBERT, R@]1 drops from 19.9 to
18.9 in English—video search and 11.1 to 9.8 in
German—video search. For XLM-R, R@1 drops
from 21.0 to 18.9 in English—video search and
16.3 to 14.1 in German—video search. These re-
sults imply that text-only contextual multilingual
embeddings along are likely to be infeasible to be
applied to vision-language tasks without proper
fine-tuning.

An important observation is that the best
English—video search performance corresponds
to the best German—video performance. This
trend implies that for model selection, the config-
uration for the best English—video model usually
translates to the best configuration for (zero-shot)
cross-lingual model. This shared trend justifies the
English—video ablation studies in the original pa-
per. Note that we utilize the best English—video
for all (zero-shot) cross-lingual experiment in our
experiment section.

For multilingual text—video search, the best
configuration we found in our experiments is to
output the 12-th layer and freeze the layers below
9 for both mBERT and XLM-R.

E Additional Experimental Results

The coverage of our text—video search experi-
ments is summarized in Table 11. Our experiments
cover the following scenarios:

In-domain, English: Table 5 (VTT) and Table 6
(VATEX) in the original paper.

In-domain, non-English: Table 4 (VTT, 9 lan-
guages) and Table 6 (VATEX, Chinese).
Out-of-domain, English: Additional (zero-shot)
generalization results across datasets are in §E.1.
Out-of-domain, non-English: We consider this
as our future work.

Model R@1 R@5 R@10
VSE (Kiros et al., 2014) 10.1 294 41.5
VSE++ (Faghri et al., 2018) 14.4 35.7 46.9
Dual (Dong et al., 2019) 13.7 36.1 48.2
HGR (Chen et al., 2020a) 16.4 38.3 49.8
Ours-Full 24.0 50.5 62.1

Table 12: Zero-shot generalization on YouTube2Text
with VT T-finetuned model.

E.1 Generalizability across English-Video
Datasets

In this section. we provide additional experiment
results regarding zero-shot generalization of the
VTT-finetuned model on out-of-domain dataset.
Specifically, we test on YouTube2Text (Chen and
Dolan, 2011). The aim of this experiment is to
test the cross-dataset generalizabilty of our model
without using domain-specific training data.

Table 12 shows the comparison of
English—video  search  results on the
YouTube2Text testing set. Models in this ta-
ble are only fine-tuned on VTT and use no
YouTube2Text training data. As can be observed,
our model with MMP generalizes well on
YouTube2Text, outperforming HGR (Chen et al.,
2020a) by 7.6 and DualEncoder (Dong et al., 2019)
by 10.3 in R@1.
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Abstract

In video transformers, the time dimension is often treated in the same way as the
two spatial dimensions. However, in a scene where objects or the camera may move,
a physical point imaged at one location in frame ¢ may be entirely unrelated to what
is found at that location in frame ¢ + k. These temporal correspondences should
be modeled to facilitate learning about dynamic scenes. To this end, we propose a
new drop-in block for video transformers—trajectory attention—that aggregates
information along implicitly determined motion paths. We additionally propose a
new method to address the quadratic dependence of computation and memory on
the input size, which is particularly important for high resolution or long videos.
While these ideas are useful in a range of settings, we apply them to the specific task
of video action recognition with a transformer model and obtain state-of-the-art
results on the Kinetics, Something—Something V2, and Epic-Kitchens datasets.
Code and models are available at: https://github.com/facebookresearch/
Motionformer.

1 Introduction

Transformers [76] have become a popular architecture across NLP [32], vision [20] and speech [4].
The self-attention mechanism in the transformer works well for different types of data and across
domains. However, its generic nature and its lack of inductive biases also mean that transformers
typically require extremely large amounts of data for training [57, 8], or aggressive domain-specific
augmentations [72]. This is particularly true for video data, for which transformers are also appli-
cable [51], but where statistical inefficiencies are exacerbated. While videos carry rich temporal
information, they can also contain redundant spatial information from neighboring frames. Vanilla
self-attention applied to videos compares pairs of image patches extracted at all possible spatial
locations and frames. This can lead it to focus on the redundant spatial information rather than the
temporal information, as we show by comparing normalization strategies in our experiments.

We therefore contribute a variant of self-attention, called trajectory attention, which is better able
to characterize the temporal information contained in videos. For the analysis of still images,

* Equal contribution.

Preprint. Under review.



spatial locality is perhaps the most important inductive bias, motivating the design of convolutional
networks [41] and the use of spatial encodings in vision transformers [20]. This is a direct consequence
of the local structure of the physical world: points that belong to the same 3D object tend to project
to pixels that are close to each other in the image. By studying the correlation of nearby pixels, we
can thus learn about the objects.

Figure 1: Trajectory attention. In this sequence of frames from the Kinetics-400 dataset, depicting
the action ‘kicking soccer ball’, the ball does not remain stationary with respect to the camera, but
instead moves to different locations in each frame. Trajectory attention aims to share information
along the motion path of the ball, a more natural inductive bias for video data than pooling axially
along the temporal dimension or over the entire space-time feature volume. This allows the network
to aggregate information from multiple views of the ball, to reason about its motion characteristics,
and to be less sensitive to camera motion.

Videos are similar, except that 3D points move over time, thus projecting on different parts of the
image along certain 2D trajectories. Existing video transformer methods [7, 2, 51] disregard these
trajectories, pooling information over the entire 3D space-time feature volume [2, 51], or pooling
axially across the temporal dimension [7]. We contend that pooling along motion trajectories would
provide a more natural inductive bias for video data, allowing the network to aggregate information
from multiple views of the same object or region, to reason about how the object or region is moving
(for example, the linear and angular velocities), and to be invariant to camera motion.

We leverage attention itself as a mechanism to find these trajectories. This is inspired by methods
such as RAFT [71], which showed that excellent estimates of optical flow can be obtained from
the correlation volume obtained by comparing local features across space and time. We observe
that the joint attention mechanism for video transformers computes such a correlation volume as an
intermediate result. However, subsequent processing collapses the volume without consideration
for its particular structure. In this work, we seek instead to use the correlation volume to guide the
network to pool information along motion paths.

We also note that visual transformers operate on image patches which, differently from individual
pixels, cannot be assumed to correspond to individual 3D points and thus to move along simple 1D
trajectories. For example, in Figure 1, depicting the action ‘kicking soccer ball’, the ball spans up to
four patches, depending on the specific video frame. Furthermore, these patches contain a mix of
foreground (the ball) and background objects, thus at least two distinct motions. Fortunately, we are
not forced to select a single putative motion: the attention mechanism allows us to assemble a motion
feature from all relevant ‘ball regions’.

Inspired by Nystromformer [85], we also propose a principled approximation to self-attention,
Orthoformer. Our approximation sets state-of-the-art performance on the recent Long Range Arena
(LRA) benchmark [70] for evaluating efficient attention approximations and generalizes beyond the
video domain to long text and high resolution images, with lower FLOPS and memory requirements
compared to alternatives, Nystromformer and Performer [14]. Combining our approximation with
trajectory attention allows us to significantly improve its computational and memory efficiency. With
our contributions, we set state-of-the-art results on four video action recognition benchmarks.



2 Related Work

Video representations and 3D-CNNs. Hand-crafted features were originally used to convert video
data into a representation amenable to analysis by a shallow linear model. Such representations
include SIFT-3D [61], HOG3D [38], and IDT [77]. Since the breakthrough of AlexNet [39] on the
ImageNet classification benchmark [59], which demonstrated the empirical benefits of deep neural
networks to learn representations end-to-end, there have been many attempts to do the same for video.
Architectures with 3D convolutions—3D-CNNs—were originally proposed to learn deep video
representations [73]. Since then, improvements to this paradigm include the use of ImageNet-inflated
weights [10], the space-time decomposition of 3D convolutions [55, 75, 84], channel-separated
convolutions [74], non-local blocks [80], and attention layers [12].

Vision transformers. The transformer architecture [76], originally proposed for natural language
processing, has recently gained traction in the computer vision domain. The vision transformer
(ViT) [20] decomposes an image into a sequence of 16 x 16 words and uses a multi-layer transformer
to perform image classification. To improve ViT’s data efficiency, DeiT [72] used distillation from
a strong teacher model and aggressive data augmentation. Transformers have also been used in
a variety of vision image tasks, such as image representation learning [11, 83, 18, 60], image
generation [52], object detection [47, 9], few-shot learning [19], and image—text representation
learning [49, 63, 68, 43, 69]. and video-text [65, 64, 87, 26, 54, 1, 5], and video-audio [42, 53, 29]
representation learning. While the use of transformer architectures for video is still in its infancy,
concurrent works [7, 2, 51, 22] have already demonstrated that this is a highly promising direction.
However, these approaches do not have a mechanism for reasoning about motion paths, treating time
as just another dimension, unlike our approach.

Efficient attention. Due to the quadratic complexity of self-attention, there has been a significant
amount of research on how to reduce its computational complexity with respect to time and memory
use. Sparse attention mechanisms [13] were used to reduce self-attention complexity to O(n+/n),
and locality-sensitivity hashing was used by Reformer [37] to further reduce this to O(nlogn). More
recently, linear attention mechanisms have been introduced, namely Longformer [6], Linformer [79],
Performer [14] and Nystromformer [85]. The Long Range Arena benchmark [70] was recently
introduced to compare these different attention mechanisms.

Temporal correspondences and optical flow. There are many approaches that aim to establish
explicit correspondences between video frames as a way to reason about camera and object motion.
For short-range correspondences across time, optical flow algorithms [30, 66, 71] are highly effective.
In particular, RAFT [71] showed the effectiveness of an all-pairs inter-frame correlation volume as an
encoding, which is essentially an attention map. All-pairs intra-frame correlations were subsequently
shown to help resolve correspondence ambiguities [34]. For longer-range correspondences, object
tracking by repeated detection [58] and data association can be used. In contrast to these approaches,
our work does not explicitly establish temporal correspondences, but facilitates implicit correspon-
dence learning via trajectory attention. Jabri et al. [31] estimate correspondences in a similar way,
framing the problem as a contrastive random walk on a graph and apply explicit guidance via a cycle
consistency loss. Incorporating such guidance into a video transformer is an interesting direction.

3 Trajectory Attention for Video Data

Our goal is to modify the attention mechanism in transformers to better capture the information
contained in videos. Consider an input video I € RT *3XHxW congisting of 7" frames of resolution
H x W. As in existing video transformer models [7, 2], we pre-process the video into a sequence
of ST tokens x,; € RP, for a spatial resolution of S and a temporal resolution of 7. We use a
cuboid embedding [2, 22], where disjoint spatio-temporal cubes from the input volume are linearly
projected to RP (equivalent to a 3D convolution with downsampling). We also test an embedding
of disjoint image patches [20]. A learnable positional encoding e € R is added to the video
embeddings for spatial and temporal dimensions separately, resulting in the code zs; = x4 + €2 + el.
Finally, a learnable classification token z is added to the sequence of tokens, like in the BERT
Transformer [32], to reason about the video as a whole. For clarity, we elide the classification token
from our treatment in the sequel.
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Figure 2: Trajectory attention flowchart. We divide the attention operation into two stages: the first
forming a set of ST trajectory tokens for every space-time location st—a spatial attention operation
between pairs of frames—and the second pooling along these trajectories with a 1D temporal attention
operation. In this way, we accumulate information along the motion paths of objects in the video.
The softmax operations are computed over the last dimension.

We now have a set of tokens that form the input to a sequence of transformer layers that, as in
ViT [20], consist of Layer Norm (LN) operations [3], multi-head attention (MHA) [76], residual
connections [28], and a feed-forward network (MLP):

y = MHA(LN(z)) + z; 2’ = MLP(LN(y)) +y. (1)

In the next section, we shall focus on a single head of the attention operation, and demonstrate
how self-attention can realize a suitable inductive bias for video data. For clarity of exposition, we
abuse the notation slightly, neglecting the layer norm operation and using the same dimensions for
single-head attention as for multi-head attention.

3.1 Video self-attention

The self-attention operation begins by forming a set of query-key-value vectors qg;, Kss, Vs € RP,
one for each space-time location st in the video. These are computed as linear projections of the input
Zst, that is, qss = Wyzss, ksg = Wz, and v, = Wz, for projection matrices W; € RPXD.
A direct application of attention across space-time (called joint space-time attention [7, 2]) computes:

exp Qsmk /t/>
Vst = Vet " —————————— )
ot ,Zt, ot teXp<qstaks >

In this way, each query q,; is compared to all keys k4 using dot products, the results are normalized
using the softmax operator, and the weights thus obtained are used to average the values corresponding
to the keys. Compared to a standard transformer, we have omitted for brevity the softmax temperature
parameter D'/? and instead assume that the queries and keys have been divided by D'/4.

One issue with this formulation is that it has quadratic complexity in both space and time, i.e.,
O(S2T?). An alternative is to restrict attention to either space or time (called divided space-time
attention):

exp(Qst, Ksr¢) exp(Qst, Kst/)
S_E Sl~— : S—E st et TS 3
Yt Vst > s exp(Qst, Kst) (space); ¥t Vst > orexp(Qst, ksz) (time). — (3)

This reduces the complexity to O(S?T) and O(ST?), respectively, but only allows the model to
analyse time and space independently. This is usually addressed by interleaving [7] or stacking [2]
the two attention modules in a sequence.

Different to both of these approaches, we perform attention along trajectories, the probabilistic
path of a token between frames.? For each space-time location st (the trajectory ‘reference point’)
and corresponding query q;, we construct a set of trajectory tokens y s/, representing the pooled

Here, we refer to the trajectory as the motion between pairs of frames, rather than a multi-frame path.



information weighted by the trajectory probability. The trajectory extends for the duration of the
video sequence and its tokens ¥ ;;» € RY at different times ¢’ are given by:

exp(Qst, Ks ’t’>
VA ’ —. 4
Vit sz t 6Xp<q5t,k§t/> “4)

Note that the attention in this formula is applied spatially (index s) and independently for each
frame. Intuitively, this pooling operation implicitly seeks the location of the trajectory at time ¢’ by
comparing the trajectory query qs; to the keys kg, at time ¢’

Once the trajectories are computed, we further pool them across time to reason about intra-frame
information/connections. To do so, the trajectory tokens are projected to a new set of queries, keys
and values as usual:

dst = Wq ystta l;stt’ = Wk S’stt/: ‘N’stt’ = WU ystt’- (5)
Like qs; before, the updated reference query qs; corresponds to the trajectory reference point st and
contains information spatially-pooled from across the reference frame ¢. This new query is used to
pool across the new time (trajectory) dimension by applying 1D attention:

sty ks 4
Yot = Z oy - PG k) ©)
Zt exp(Qst, kstt)

Like joint space-time attention, our approach has quadratic complexity in both space and time,
O(S?T?), 50 has no computational advantage and is in fact slower than divided space-time attention.
However, we demonstrate better accuracy than both joint and divided space-time attention mecha-
nisms. We also provide fast approximations in Section 3.2. A flowchart of the full trajectory attention
operation is shown in tensor form in Figure 2.

3.2 Approximating attention

To complement our trajectory attention, we also propose an approximation scheme to speed up
calculations. This scheme is generic and applies to any attention-like pooling mechanism. We thus
switch to a generic transformer-like notation to describe it. Namely, consider query-key-value matrices
Q, K,V € RP*N guch that the query-key-value vectors are stored as columns q;, k;, v; € R in
these matrices.

In order to obtain an efficient decomposition of the attention operator, we will rewrite it using a
probabilistic formulation. Let A;; € {0, 1} be a categorical random variable indicating whether the
Jth input (with key vector k; € RP) is assigned to the ith output (with query vector q; € R?), with
> j A;; = 1. The attention operator uses a parametric model of the probability of this event based on

the multinomial logistic function, i.e., the softmax operator S(-):3

P(4;) = S(a/K), (7)
where the subscript : denotes a full slice of the input tensor in that dimension. We now introduce
the latent variables Uy; € {0, 1}, which similarly indicate whether the jth input is assigned to the

(th prototype, an auxiliary vector which we denote by p, € R”. We can use the laws of total and
conditional probability to obtain:

P(Aj) = ZKP(AU | Uej)P(Usj)- (®)

Note that the latent variables that we chose are independent of the inputs (keys). They use the
same parametric model, but with parameters P € RP*% (the concatenated prototype vectors py):
P(U) = S(P"K). Eq. 8 is exact, even under the parametric model for P(U), though the corre-
sponding true distribution P(A | U) is intractable. We now approximate the conditional probability
P(A | U) with a similar parametric model:

P(A|U)=S(Q'P), ©)
where Q € RP*N concatenates all query vectors horizontally. Substituting equations 7-9 we

write the full approximate attention.A, multiplied by an arbitrary matrix V (which in the case of a
transformer contains the values of the key—value pairs stacked as rows):

P(A)V =8(Q'P) (S(PTK)V). (10)
*Le. [S(2)); = exp(zi/VD)/ > exp(z;/v/D). For matrix inputs, the sum is over the columns.




Table 1: Comparison of recent video transformer models. We show the different design choices
of recent video transformer models and how they compare to our proposed Motionformer model.

Model Base Model Attention Pos. Encoding Tokenization
TimeSformer [7] ViT-B Divided Space-Time Separate Square
ViViT [2] ViT-L Joint/Divided Space-Time Joint Cubic
Motionformer ViT-B Trajectory Separate Cubic

Computational efficiency. One important feature of the approximation in eq. 10 is that it can
be computed in two steps. First the values V are multiplied by a prototypes-keys attention matrix
S(PTK) € REF*Y  which can be much smaller than the full attention matrix S(QTK) € RV*¥
(eq. 7), i.e., R < N. Finally, this product is multiplied by a queries-prototypes attention matrix
S(QTP) € RV*E which is also small. This allows us to sidestep the quadratic dependency of full
attention over the input and output size (O(N?)), replacing it with linear complexity (O(IV)) as long
as R is kept constant.

Prototype selection. The aim for prototype-based attention approximation schemes is to use as
few prototypes as possible while reconstructing the attention operation as accurately as possible. As
such, it behooves us to select prototypes efficiently. We have two priorities for the prototypes: to
dynamically adjust to the query and key vectors so that their region of space is well-reconstructed,
and to minimize redundancy. The latter is important because the relative probability of a query—key
pair may be over-estimated if many prototypes are clustered near that query and key. To address these
criteria, we incrementally build a set of prototypes from the set of queries and keys such that a new
prototype is maximally orthogonal to the prototypes already selected, starting with a query or key at
random. This greedy strategy is dynamic, since it selects prototypes from the current set of queries
and keys, and has high entropy, since it preferences well-separated prototypes. Moreover, it balances
speed and performance by using a greedy strategy, rather than finding a globally-optimal solution to
the maximum entropy sampling problem [62], making it suitable for use in a transformer.

Naively applying prototype-based attention approximation techniques to video transformers would
involve creating a unique set of prototypes for each frame in the video. However, additional
memory savings can be realized by sharing prototypes across time. Since there is significant
information redundancy between frames, video data is opportune for compression via temporally-
shared prototypes.

Orthoformer algorithm. The proposed approximation algorithm is outlined in Algorithm 1. The
attention matrix is approximated using intermediate prototypes, selected as the most orthogonal
subset of the queries and keys, given a desired number of prototypes R. To avoid a linear dependence
on the sequence length IV, we first randomly subsample cR queries and keys, for a constant ¢, before
selecting the most orthogonal subset, resulting in a complexity quadratic in the number of prototypes
O(R?). The algorithm then computes two attention matrices, much smaller than the original problem,
and multiplies them with the values. The most related approach in the literature is Nystromformer [85]
attention, outlined in Algorithm 2. This approach involves a pseudoinverse to attenuate the effect of
near-parallel prototypes, has more operations, and a greater memory footprint.

Algorithm 1 Orthoformer (proposed) attention Algorithm 2 Nystromformer [85] attention
1: P + MostOrthogonalSubset(Q, K, R) : Py, Py < SegmentMeans(Q, K, R)
2: Q1 =8(Q"P/vVD) : Q1 =S(Q"PL/VD)
3: Q= S(P'K/VD) Q, "' = Iterativelnverse(S(P P /v/D), Nier)
4 Y = (V) . Q3 = S(PIK/VD)
DY = (1 (2:V))

3.3 The Motionformer model

Our full video transformer model builds on previous work, as shown in Table 1. In particular, we use
the ViT image transformer model [20] as the base architecture, the separate space and time positional
encodings of TimeSformer [7], and the cubic image tokenization strategy as in ViViT [2]. These
design choices are ablated in Section 4. The crucial difference for our model is the trajectory attention
mechanism, with which we demonstrate greater empirical performance than the other models.



Table 2: Input encoding ablations: Comparison of input tokenization and positional encoding
design choices. We report GFLOPS and top-1 accuracy (%) on K-400 and SSv2.

(a) Cubic tokenization works best for trajectory attn.  (b) Trajectory attn. works well with both encodings.

Attention Tokenization = GFlops K-400 SSv2  Attention Pos. Encoding  GFlops K-400 SSv2

Joint ST  Square (1x16%) 179.7 794 63.0 JointST  Joint ST 180.6 79.1 60.8
Cubic (2x16%) 180.6 792 64.0 Separate ST [22] 180.6 79.2 64.0
Trajectory Square (1x 16%) 3685 794 65.8 Trajectory Joint ST 369.5 79.6 65.8
Cubic (2x16) 369.5 79.7 66.5 Separate ST [22] 369.5 79.7 66.5

4 Experiments

Datasets.  Kinetics [35] is a large-scale video classification dataset consisting of short clips
collected from YouTube, licensed by Google under Creative Commons. As it is a dataset of human
actions, it potentially contains personally identifiable information such as faces, names and license
plates. Something—Something V2 [27] is a video dataset containing more than 200,000 videos
across 174 classes, with a greater emphasis on short temporal clips. In contrast to Kinetics, the
background and objects remain consistent across different classes, and therefore models have to
reason about fine-grained motion signals. We verified the importance of temporal reasoning on this
dataset by showing that a single frame model gets significantly worse results, a decrease of 39%
top-1 accuracy. In contrast, a drop of only 7% is seen on the Kinetics-400 dataset, showing that
temporal information is much less relevant there. We obtained a research license for this data from
https://20bn. com; the data was collected with consent. Epic Kitchens-100 [16] is an egocentric
video dataset capturing daily kitchen activities. The highest scoring verb and action pair predicted by
the network constitutes an action, for which we report top-1 accuracy. The data is licensed under
Creative Commons and was collected with consent by the Epic Kitchens teams.

Implementation details. We follow a standard training and augmentation pipeline [2], as detailed
in the appendix. For ablations, our default Motionformer model is the Vision Transformer Base
architecture [20] (ViT/B), pretrained on ImageNet-21K [17], patch-size 2x 16 x 16 with central frame
initialization [2], separate space-time positional embedding and our trajectory attention. The base
architecture has 12 layers, 12 attention heads, and an embedding dimension of 768. Our default
Motionformer model operates on 16 x224 x 224 videos with temporal stride 4 i.e. temporal extent of
2s. For comparisons with state-of-the-art, we report results on two additional variants: Motionformer-
HR, which has a high spatial resolution (16 X336 x 336 videos with temporal stride 4 i.e. temporal
extent of 2s), and Motionformer-L, which has a long temporal range (32x224x224 videos with
temporal stride 3 i.e. temporal extent of 3s). Experiments with the large ViT architecture are deferred
to the appendix.

4.1 Ablation studies

Input: tokenization. We consider the effect of different input tokenization approaches for both joint
and trajectory attention on Kinetics-400 (K-400) and Something—Something V2 (SSv2) in Table 2b.
For patch tokenization (1x16x16), we use inputs of size 8x224x224, while for cubic [2, 22]
tokenization (2x16x16), we use inputs of size 16x224x224 to ensure that the model has the same
number of input tokens over the same temporal range of 2 seconds. For both attention types, we see
that cubic tokenization gives a 1% accuracy improvement over square tokenization on SSv2, a dataset
for which temporal information is critical. Furthermore, our proposed trajectory attention using cubic
tokenization outperforms joint space-time attention on both datasets.

Input: positional encoding. Here, we ablate using a joint or separate [22] (default) space-time
positional encoding in Table 2b. Similar to the results for input tokenization, the choice of positional
encoding is particularly important for the fine-grained motion dataset, SSv2. Since joint space-time
attention treats tokens in the space-time volume equally, it benefits particularly from separating the
positional encodings, allowing it to differentiate between space and time dimensions, with a 4%
improvement on SSv2 over joint space-time encoding. Our proposed trajectory attention elicits a more
modest improvement of 1% from using separated positional encodings on SSv2, and outperforms
joint space-time attention in both settings on both datasets.



Table 3: Orthoformer ablations: We ablate various aspects of our Orthoformer approximation.
E denotes exact attention and A denotes approximate attention. We report max CUDA memory
consumption (GB) and top-1 accuracy (%) on K-400 and SSv2.

(a) Orthoformer is competitive with Nystrom. (b) Selecting orthogonal prototypes is the best strategy.
Attention Approx. Mem. K-400 SSv2  Attention Selection Mem. K-400 SSv2
Trajectory (E) N/A 74 797 66.5  Trajectory (E) N/A 7.4 79.7  66.5
Trajectory (A) Performer 5.1 729 5277  Trajectory (A) Seg-Means 3.6 75.8 603

Nystromformer 3.8 77.5 64.0 Random 3.6 76.5 625
Orthoformer 3.6 77.5 63.8 Orthogonal 3.6 775 63.8
(c) Approximation improves with more prototypes. (d) Temporal sharing is the best strategy.

Attention # Prototypes Mem. K-400 SSv2  Attention Sharing Mem. K-400  SSv2

Trajectory (E) N/A 7.4 79.7 66.5  Trajectory (E) N/A 7.4 79.7 66.5

Trajectory (A) 16 3.1 739 592  Trajectory (A) X 16.5 713 61.5
64 33 749 63.0 v 3.6 71.5 63.8
128 36 775 638

Table 4: Attention ablations: We compare trajectory attention with alternatives and ablate its design
choices. We report GFLOPS and top-1 accuracy (%) on K-400 and SSv2. Attr: temporal attention,
Avgp: temporal averaging, Normgy: space-time normalization, Normg: spatial normalization.

Attention | Aty Avgr | Norms Normsr | GFLOPS |  K-400 SSv2
Joint Space-Time - - - - 180.6 79.2 64.0
Divided Space-Time - - - - 185.8 78.5 64.2
X v v X 180.6 76.0 60.0
v X X v 369.5 77.2 60.9
Trajectory v X v X 369.5 79.7 66.5

Attention block: comparisons. We compare our proposed trajectory attention to joint space-time
attention [2], and divided space-time attention [7] in Table 4. Our trajectory attention (bottom
row) outperforms both alternatives on the K-400 and SSv2 datasets. While we see only modest
improvements on the appearance cue-reliant K-400 dataset, our trajectory attention significantly
outperforms (42%) the other approaches on the motion cue-reliant SSv2 dataset. This dataset requires
fine-grained motion understanding, something explicitly singled out by previous video transformer
works [2, 7] as a challenge for their models. In contrast, our trajectory attention excels on this dataset,
indicating that its motion-based design is able to capture some of this information.

Attention block: trajectory attention design. We ablate two design choices for our trajectory
attention: the per-frame softmax normalization and the 1D temporal attention. Unlike joint space-time
attention, which normalizes the attention map over all tokens in space and time, trajectory attention
normalizes independently per frame, allowing us to implicitly track the trajectories of query patches
in time. In row 5 of Table 4, we ablate the benefits of this design choice. We observe a reduction of
2.5% on K-400 and 5.6% on SSv2 by normalizing over space and time (Normgr) compared with
normalizing over space alone (Normg). In row 4, we show the benefit of using 1D temporal attention
(Attr) to aggregate temporal features, compared to average pooling (Avgr). We observe reductions of
3.7% on K-400 and 6.5% on SSv2 when using average pooling instead of temporal attention applied
to the motion trajectories, although it saves computing the additional query/key/value projections.

4.2 Orthoformer approximated attention

Approximation comparisons. In Table 3a, we compare our Orthoformer algorithm to alternative
strategies: Nystromformer [85] and Performer [14]. Our algorithm performs comparably with
Nystromformer with a reduced memory footprint. In Table 5, we also compare these attention
mechanisms on the Long Range Arena benchmark [70] to show applicability to other tasks and data
types. Orthoformer is able to effectively approximate self-attention, outperforming the state-of-the-art
despite using far fewer prototypes (64) and so gaining significant computational and memory benefits.



Table 5: Comparison to the state-of-the-art on Long Range Arena benchmark. GFLOPS and
CUDA maximum Memory (MB) are reported for the ListOps task. Note that our algorithm achieves
the best overall results with far fewer prototypes (64) than the other methods.

Model ListOps ~ Text Retrieval Image Pathfinder | Avgt | GFLOPS| Mem.|
Exact [76] 36.69 63.09 78.22 31.47 66.35 ‘ 55.16 ‘ 1.21 4579
Performer-256 [14] 36.69 6322 7898  29.39 66.55 ‘ 54.97 ‘ 0.49 885
Nystromformer-128 [85]  36.90  64.17  78.67 366 5232 |53.64| 062 745
Orthoformer-64 33.87 64.42 7836  33.26 66.41 |5526| 0.24 344

Table 6: Comparison to the state-of-the-art on video action recognition. We report GFLOPS
and top-1 (%) and top-5 (%) video action recognition accuracy on K-400/600, and SSv2. On
Epic-Kitchens, we report top-1 (%) action (A), verb (V), and noun (N) accuracy.

(a) Something—Something V2 (b) Kinetics-400
Model Pretrain Top-1 Top-5 GFLOPs Xviews Method Pretrain Top-1 Top-5 GFLOPs X views
SlowFast [25] K-400 61.7 - 65.7x3x1 13D [10] IN-1K 72.1 89.3 108 X N/A
TSM [46] K-400 634 885 62.4x3x2 RQ2+1)D [75] - 72.0 90.0 152x5x%23
STM [33] IN-1K 64.2 89.8 66.5%x3x10 S3D-G [84] IN-1K 74.7 93.4 142.8 X N/A
MSNet [40] IN-1K 64.7 894 67x1x1 X3D-XL [24] - 79.1 93.9 48.4x3x10
TEA [45] IN-1K 65.1 - 70x3x10 SlowFast [25] - 79.8 93.9 234x3x10
bLVNet [23] IN-1K 65.2 90.3 128.6x3x 10 VIN [51] IN-21K 78.6 93.7 4218%1x 1
VidTr-L [44]  IN-21K+K-400 60.2 - 351x3x10 VidTr-L [44] IN-21K 79.1 93.9 392x3x10
Tformer-L [7] IN-21K 62.5 - 1703x3x1 Tformer-L[7] IN-21K 80.7 94.7 2380x3x1
ViViT-L [2] IN-21K+K-400 65.4 89.8 3992x4x3  MVIiT-B [22] - 81.2 95.1 455%x3x%3
MVIiT-B [22] K-400 67.1  90.8 170x3x1  ViViT-L [2] IN-21K 81.3 94.7 3992x3x4
Mformer IN-21K+K-400  66.5 90.1 369.5x3x1 Mformer IN-21K 79.7 94.2 369.5x3x10
Mformer-L  IN-21K+K-400 68.1  91.2 1185.1x3x1 Mformer-L IN-21K 80.2 94.8 1185.1x3x10
Mformer-HR IN-21K+K-400 67.1 90.6 958.8x3x1 Mformer-HR IN-21K 81.1 95.2 958.8x3x10
(c) Epic-Kitchens (d) Kinetics-600
Method Pretrain A v N Model Pretrain ~ Top-1 Top-5  GFLOPs Xviews
TSN [78] IN-1K 332 60.2 46.0 AttnNAS [81] - 79.8 94.4 -
TRN [86] IN-1K 353 65.9 454 LGD-3D [56] IN-1K 81.5 95.6 -
TBN [36] IN-1K 36.7 66.0 47.2  SlowFast [25] - 81.8 95.1 234x3x10
TSM [46] IN-1K 38.3 67.9 49.0 X3D-XL [24] - 81.9 95.5 48.4x3x10
SlowFast [25] K-400 38.5 656 500 TformerHR[7] IN2IK 824  96.0 1703 %3 1
ViViT-L [2] IN-21K+K-400 44.0 66.4 56.8 ViViT-L [2] IN-21K 83.0 95.7 3992 x3x4
Mformer IN2IK+K400  43.1 66.7 565 MVITB-24[22] - 838 963 236X 1x5
Mformer-L IN-21K+K-400 44.1 67.1 57.6  Mformer IN-21K 81.6 95.6 369.5%x3x10
Mformer-HR IN-21K+K-400 44.5 67.0 58.5 Mformer-L IN-21K 82.2 96.0 1185.1x3x 10
Mformer-HR IN-21IK  82.7 96.1 958.8x3x 10

Prototype selection. A key part of our Orthoformer algorithm is the prototype selection procedure.
In Table 3b, we ablate three prototype selection strategies: segment-means, random, and greedy
most-orthogonal selection. Segment-means, the strategy used in Nystromformer, performs poorly
because it can generate multiple parallel prototypes, which will over-estimate the relative probability
of query—key pairs near those redundant prototypes. In contrast, our proposed strategy of selecting the
most orthogonal prototypes from the query and key set works the best across both datasets, because it
explicitly minimises prototype redundancy with respect to direction.

Number of prototypes. In Table 3c, we show that Orthoformer improves monotonically as the
number of prototypes is increased. In particular, we see an average performance improvement of 4%
on both datasets as we increase the number of prototypes from 16 to 128.

Temporally-shared prototypes. In Table 3d, we demonstrate the memory savings and perfor-
mance benefits of sharing prototypes across time. On SSv2, we observe a 2% improvement in
performance and a 5x decrease in memory usage. These gains may be attributed to the regularization
effect of having prototypes leverage redundant information across frames.



4.3 Comparison to the state-of-the-art

In Table 6, we compare our method against the current state-of-the-art on four common benchmarking
datasets: Kinetics-400, Kinetics-600, Something—Something v2 and Epic-Kitchens. We find that our
method performs favorably against current methods, even when compared against much larger models
such as ViViT-L. In particular, it achieves strong top-1 accuracy improvements of 1.0% and 2.3% for
SSv2 and Epic-Kitchen Nouns, respectively. These datasets require greater motion reasoning than
Kinetics and so are a more challenging benchmark for video action recognition.

5 Conclusion

We have presented a new general-purpose attention block for video data that aggregates information
along implicitly determined motion trajectories, lending a realistic inductive bias to the model.
We further address its quadratic dependence on the input size with a new attention approximation
algorithm that significantly reduces the memory requirements, the largest bottleneck for transformer
models. With these contributions, we obtain state-of-the-art results on several benchmark datasets.
Nonetheless, our approach inherits many of the limitations of transformer models, including poor
data efficiency and slow training. Specific to this work, trajectory attention has higher computational
complexity than alternative attention operations used for video data. This is attenuated by the
proposed approximation algorithm, with significantly reduced memory and computation requirements.
However, its runtime is bottlenecked by prototype selection, which is not easily parallelized.

Potential negative societal impacts. One negative impact of this research is the significant envi-
ronmental impact associated with training transformers, which are large and compute-expensive
models. Compared to 3D-CNNs where the compute scales linearly with the sequence length, video
transformers scale quadratically. To mitigate this, we proposed an approximation algorithm with
linear complexity that greatly reduces the computational requirements. There is also potential for
video action recognition models to be misused, such as for unauthorized surveillance.
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6 Appendix

6.1 Further experimental analysis and results

6.1.1 Does trajectory attention make better use of motion cues?

In the main paper (and below in Section 6.1.2), we provide evidence that action classification on
the Something—Something V2 (SSv2) dataset [27] is more reliant on motion cues than the Kinetics
dataset [35], where appearance cues dominate and a single-frame model achieves high accuracy.
Improved performance on SSv2 is one way to infer that our model makes better use of temporal
information, however, here we consider another way. We artificially adjust the speed of the video
clips by changing the temporal stride of the input. A larger stride simulates faster motions, with
adjacent frames being more different. If our trajectory attention is able to make better use of the
temporal information in the video than the other attention mechanisms, we expect the margin of
improvement to increase as the temporal stride increases. As shown in Figure 3, this is indeed what
we observe, with the lines diverging as temporal stride increases, especially for the motion cue-reliant
SSv2 dataset. Since the same number of frames are used as input in all cases, the larger the stride, the
more of the video clip is seen by the model. This provides additional confirmation that seeing a small
part of a Kinetics video is usually enough to classify it accurately, as shown on the bottom left, where
the absolute accuracy is reported.

6.1.2 How important are motion cues for classifying videos from the Kinetics-400 and
Something—Something V2 datasets?

To determine the relative importance of motion cues compared to appearance cues for classifying
videos on two of the major video action recognition datasets (Kinetics-400 and Something—Something
V2), we trained a single frame vision transformer model and compare the results to a multi-frame
model that can reason about motion. The single frame was sampled from the video at random.
Table 7 shows that single-frame action classifiers can do almost as well as video action classifiers
on the Kinetics-400 dataset, implying that the motion information is much less relevant. In contrast,
classifying videos from the Something-Something V2 dataset clearly requires this motion information.
Therefore, to excel on the SSv2 dataset, a model must reason about motion information. Our model,
which introduces an inductive bias that favors pooling along motion trajectories, is able to do this and
sees corresponding performance gains.

Table 7: Importance of motion cues for the K-400 and SSv2 datasets. A classifier for the K-400
dataset performs well when all motion information is removed (1 frame model), while a classifier for
the SSv2 dataset performs very poorly. Therefore, SSv2 is a better dataset for evaluating video action
classification, where the combination of appearance and motion is critical.

Dataset Top-1 accuracy (1 frame) Top-1 accuracy (8 frames) A
Kinetics-400 73.2 79.7 6.5
Something—Something V2 27.1 66.5 394

6.1.3 Can we train larger models using approximated trajectory attention?

The Orthoformer attention approximation algorithm allows us to train larger models and higher
resolution inputs for a given GPU memory budget. Here, we verify that this is the case, by training a
large vision transformer model (ViT-L/16) [20] with a higher resolution input (336 x 336 pixels) on
the Kinetics-400 dataset, using the Orthoformer approximation with 196 temporally-shared prototypes
and the same schedule as the base model. We use a fixed patch size (in pixels) for all models, and
so the number of input tokens to the transformer scales with the square of the image resolution.
As shown in Table 8, this model achieves a competitive accuracy without fine-tuning the training
schedule, hyperparameters or data augmentation strategy. We expect that fine-tuning these on a
validation set would greatly improve the model’s performance, based on results from contemporary
work [2]. Obviously such a parameter sweep is more time-consuming for these large models than the
base model, however these preliminary results are indicative that higher accuracies are attainable if
these parameters were to be optimized.

14



® Joint A Divided & Trajectory ® Joint A Divided & Trajectory

0.25 1T
o 000 T = = == = = = = = = = = ———— - - =
5 )
g 025 g
P -
8 050+ 8
= =
Q Q
g 075+ B
& Lood &
= =
-1.25 t t t t t t t t -3+ + + +
2 4 6 8 10 12 14 16 1/4 12 3/4 1
Temporal stride Temporal stride (xS)
(a) K-400: top-1 accuracy margin (b) SSv2: top-1 accuracy margin
® Joint 4 Divided @ Trajectory ® Joint 4 Divided & Trajectory
80 75 T
79 -
g g 77
3 3
3 78 7 3
< <
1 1 st
e 77 e
76 t t t t t t t t 15 t t t
2 4 6 8 10 12 14 16 1/4 12 3/4 1
Temporal stride Temporal stride (xS)
(c) K-400: top-1 accuracy (d) SSv2: top-1 accuracy

Figure 3: Does trajectory attention make better use of motion cues? Performance of transformer
models with joint space-time attention, divided space-time attention, and trajectory attention, as
the temporal stride increases, on the Kinetics-400 dataset (left) and the Something—Something V2
dataset (right). Top: top-1 accuracy margin relative to trajectory attention (difference of accuracy
and trajectory accuracy). Bottom: absolute top-1 accuracy shown for reference. If our trajectory
attention is able to make better use of the temporal information in the video than the other attention
mechanisms, we expect the accuracy margin between the methods to increase as the temporal stride
increases. This is indeed the observed behaviour, especially for the motion cue-reliant SSv2 dataset.
A larger stride simulates greater motion between input frames, which trajectory attention is better
able to model and reason about. Note that the larger the stride, the more of the video clip is seen by
the model; for all plots, the rightmost side of the axis corresponds to the entire video clip. Note also
that the strides for SSv2 are written as multiples of .S, the stride needed to evenly sample the entire
video clip.

6.1.4 Trajectory attention maps

In Figure 4, we show qualitative results of the intermediate attention maps of our trajectory attention
operation. The learned attention maps appear to implicitly track the query points across time, a
strategy that is easier to learn with the inductive bias instilled by trajectory attention.

6.2 Implementation details

Preprocessing. During training, we randomly sample clips of size 16x224x224 at a rate of 1/4
from 30 FPS videos, thereby giving an effective temporal resolution of just over 2 seconds. We
normalize the inputs with mean and standard deviation 0.5, rescaling in the range [—1, 1]. We use
standard video augmentations such as random scale jittering, random horizontal flips and color
jittering. For smaller datasets such as Something—Something V2 and Epic-Kitchens, we additionally
apply rand-augment [15]. During testing, we uniformly sample 10 clips per video and apply a 3 crop
evaluation [25].
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Table 8: Can we train larger models using approximated trajectory attention? We report top-1
and top-5 accuracy (%) on the Kinetics-400 dataset of two variants of our Motionformer model:
Motionformer-B and Motionformer-H. The former uses the base model with exact (E) trajectory
attention, while the latter uses a much larger model (ViT-L) and a higher resolution input (336 x 336
pixels) with approximate (A) trajectory attention, i.e., using Orthoformer. The larger model has
better performance, despite no optimization of the training schedule, hyperparameters, and data
augmentation schedule. The larger model also has far more parameters than the base model, and so
unavoidably requires more GPU memory. Furthermore, for a fixed patch size (in pixels), the memory
requirements for exact attention scale with the square of the input resolution. We reduce this to a
linear relationship with the Orthoformer approximation, which allows us to fit the model on the GPU.

Model Base model  Params Attention Max memory (GB) Top-1  Top-5
Mformer-B ViT-B/224  109.1M  Trajectory (E) 7.3 79.7 94.2
Mformer-H  ViT-L/336  381.9M  Trajectory (A) 22.2 80.0 94.5

Figure 4: Trajectory attention maps. In this sequence of frames from Kinetics-400 (row 1) and
Something-Something V2 (row 3), we show the attention maps at each frame given an initial query
point (red point). We see that the model learns to implicitly track along motion paths (yellow arrow)
using our trajectory attention module.

Training. For all datasets, we use the AdamW [48] optimizer with weight decay 5 x 1072, a
batch size per GPU of 4, label smoothing [67] with alpha 0.2 and mixed precision training [50]. For
Kinetics-400/600 and Something-Something V2, we train for 35 epochs, with an initial learning rate
of 107, which we decay by 10 at epochs 20, 30. As Epic-Kitchens is a smaller dataset, we use a
longer schedule and train for 50 epochs with decay at 30 and 40.

Long Range Arena benchmark details. For the Long-Range Arena benchmark [70], we used the
training, validation, and testing code and parameters from the Nystromformer Github repository. The
Performer [14] implementation was ported over to PyTorch from the official Github repo, and the
Nystromformer [85] implementation was used directly from its Github repository.
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Computing resources. Ablation experiments were run on a GPU cluster using 4 nodes (32 GPUs)
with an average training time of 12 hours. Experiments for comparing with state-of-the-art models
used 8 nodes (64 GPUs), with an average training time of 7 hours.

Libraries. For our code implementation, we used the timm [82] library for our base vision trans-
former implementation, and the PySlowFast [21] library for training, data processing, and the
evaluation pipeline.
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Abstract

The problem of attribution is concerned with identifying
the parts of an input that are responsible for a model’s out-
put. An important family of attribution methods is based on
measuring the effect of perturbations applied to the input.
In this paper, we discuss some of the shortcomings of exist-
ing approaches to perturbation analysis and address them
by introducing the concept of extremal perturbations, which
are theoretically grounded and interpretable. We also intro-
duce a number of technical innovations to compute extremal
perturbations, including a new area constraint and a para-
metric family of smooth perturbations, which allow us to
remove all tunable hyper-parameters from the optimization
problem. We analyze the effect of perturbations as a func-
tion of their area, demonstrating excellent sensitivity to the
spatial properties of the deep neural network under stimula-
tion. We also extend perturbation analysis to the intermedi-
ate layers of a network. This application allows us to iden-
tify the salient channels necessary for classification, which,
when visualized using feature inversion, can be used to elu-
cidate model behavior. Lastly, we introduce TorchRay', an
interpretability library built on PyTorch.

1. Introduction

Deep networks often have excellent prediction accuracy,
but the basis of their predictions is usually difficult to un-
derstand. Attribution aims at characterising the response
of neural networks by finding which parts of the network’s
input are the most responsible for determining its output.
Most attribution methods are based on backtracking the
network’s activations from the output back to the input,
usually via a modification of the backpropagation algo-
rithm [23, 31, 26, 32, 22, 3]. When applied to computer
vision models, these methods result in saliency maps that
highlight important regions in the input image.

However, most attribution methods do not start from a
definition of what makes an input region important for the
neural network. Instead, most saliency maps are validated

*Work done as a contractor at FAIR. T denotes equal contributions.
]github .com/facebookresearch/TorchRay

Figure 1: Extremal perturbations are regions of an image
that, for a given area (boxed), maximally affect the activa-
tion of a certain neuron in a neural network (i.e., “mouse-
trap” class score). As the area of the perturbation is in-
creased, the method reveals more of the image, in order of
decreasing importance. For clarity, we black out the masked
regions; in practice, the network sees blurred regions.

a-posteriori by either showing that they correlate with the
image content (e.g., by highlighting relevant object cate-
gories), or that they find image regions that, if perturbed,
have a large effect on the network’s output (see Sec. 2).

Some attribution methods, on the other hand, directly
perform an analysis of the effect of perturbing the network’s
input on its output [31, 20, 7, 5]. This usually amounts to
selectively deleting (or preserving) parts of the input and
observing the effect of that change to the model’s output.
The advantage is that the meaning of such an analysis is
clear from the outset. However, this is not as straight-
forward as it may seem on a first glance. First, since it
is not possible to visualise all possible perturbations, one
must find representative ones. Since larger perturbations
will have, on average, a larger effect on the network, one
is usually interested in small perturbations with a large ef-
fect (or large perturbations with a small effect). Second,
Fong and Vedaldi [7] show that searching for perturbations
with a large effect on the network’s output usually results
in pathological perturbations that trigger adversarial effects
in the network. Characterizing instead the typical behavior
of the model requires restricting the search to more repre-
sentative perturbations via regularization terms. This results
in an optimization problem that trades off maximizing the
effect of the perturbation with its smoothness and size. In
practice, this trade off is difficult to control numerically and
somewhat obscures the meaning of the analysis.

In this paper, we make three contributions. First, instead
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Figure 2: Comparison with other attribution methods. We compare our extremal perturbations (optimal area a* in box)
to several popular attribution methods: gradient [23], guided backpropagation [26], Grad-CAM [22], and RISE [20].

of mixing several effects in a single energy term to optimize
as in Fong and Vedaldi [7], we introduce the concept of ex-
tremal perturbations. A perturbation is extremal if it has
maximal effect on the network’s output among all perturba-
tions of a given, fixed area. Furthermore, the perturbations
are regularised by choosing them within family with a min-
imum guaranteed level of smoothness. In this way, the op-
timisation is carried over the perturbation effect only, with-
out having to balance several energy terms as done in [7].
Lastly, by sweeping the area parameter, we can study the
perturbation’s effect w.r.t. its size.

The second contribution is technical and is to provide a
concrete algorithm to calculate the extremal perturbations.
First, in the optimisation we must constrain the perturbation
size to be equal to a target value. To this end, we introduce
a new ranking-based area loss that can enforce these type
of constraints in a stable and efficient manner. This loss,
which we believe can be beneficial beyond our perturbation
analysis, can be interpreted as a hard constraint, similar to
a logarithmic barrier, differing from the soft penalty on the
area in Fong and Vedaldi [7]. Second, we construct a para-
metric family of perturbations with a minimum guarantee

amount of smoothness. For this, we use the (smooth)-max-
convolution operator and a perturbation pyramid.

As a final contribution, we extend the framework of
perturbation analysis to the intermediate activations of a
deep neural network rather than its input. This allows us
to explore how perturbations can be used beyond spatial,
input-level attribution, to channel, intermediate-layer attri-
bution. When combined with existing visualization tech-
niques such as feature inversion [13, 19, 16, 28], we demon-
strate how intermediate-layer perturbations can help us un-
derstand which channels are salient for classification.

2. Related work

Backpropagation-based methods. Many attribution
techniques leverage backpropagation to track information
from the network’s output back to its input, or an interme-
diate layer. Since they are based on simple modifications of
the backpropagation algorithm, they only require a single
forward and backward pass through the model, and are thus
efficient. [23]’s gradient method, which uses unmodified
backprop, visualizes the derivative of the network’s output



w.r.t. the input image. Other works (e.g., DeCovNet [31],
Guided Backprop [26], and SmoothGrad [25]) reduce the
noise in the gradient signal by tweaking the backprop rules
of certain layers. Other methods generate visualizations
by either combining gradients, network weights and/or
activations at a specific layer (e.g., CAM [33] and Grad-
CAM [22]) or further modify the backpropn rules to have
a probabilistic or local approximation interpretation (e.g.,
LRP [3] and Excitation Backprop [32]).

Several papers have shown that some (but not all)
backpropagation-based methods produce the same saliency
map regardless of the output neuron being analysed [14],
or even regardless of network parameters [2]. Thus, such
methods may capture average network properties but may
not be able to characterise individual outputs or intermedi-
ate activations, or in some cases the model parameters.

Perturbation-based methods. Another family of ap-
proaches perturbs the inputs to a model and observes resul-
tant changes to the outputs. Occlusion [31] and RISE [20]
occlude an image using regular or random occlusions pat-
terns, respectively, and weigh the changes in the output by
the occluding patterns. Meaningful perturbations [7] opti-
mize a spatial perturbation mask that maximally affects a
model’s output. Real-time saliency [5] builds on [7] and
learns to predict such a perturbation mask with a second
neural network. Other works have leveraged perturbations
at the input [24, 30] and intermediate layers [29] to perform
weakly and fully supervised localization.

Approximation-based methods. Black-box models can
be analyzed by approximating them (locally) with simpler,
more interpretable models. The gradient method of [23]
and, more explicitly, LIME [21], do so using linear mod-
els. Approximations using decision trees or other models
are also possible, although less applicable to visual inputs.

Visualizations of intermediate activations. To charac-
terize a filter’s behavior, Zeiler and Fergus [3 1] show dataset
examples from the training set that maximally activate that
filter. Similarly, activation maximization [23] learns an in-
put image that maximally activates a filter. Feature inver-
sion [13] learns an image that reconstructs a network’s inter-
mediate activations while leveraging a natural image prior
for visual clarity. Subsequent works tackled the problem
of improving the natural image prior for feature inversion
and/or activation maximization [28, 19, 16, 18, 17]. Re-
cently, some methods have measured the performance of
single [4, 34] and combinations of [ 1, 8] filter activations
on probe tasks like classification and segmentation to iden-
tify which filter(s) encode what concepts.

One difficulty in undertaking channel attribution is that,
unlike spatial attribution, where a salient image region is
naturally interpretable to humans, simply identifying “im-
portant channels” is insufficient as they are not naturally

interpretable. To address this, we combine the aforemen-
tioned visualization techniques with channel attribution.

3. Method

We first summarize the perturbation analysis of [7] and
then introduce our extremal perturbations framework.

3.1. Perturbation analysis

Let z : Q — R? be a colour image, where Q@ =
{0,...,H —1} x{0,...,W — 1} is a discrete lattice, and
let ® be a model, such as a convolutional neural network,
that maps the image to a scalar output value ®(x) € R.
The latter could be an output activation, corresponding to a
class prediction score, in a model trained for image classifi-
cation, or an intermediate activation.

In the following, we investigate which parts of the input
x strongly excite the model, causing the response ®(x) to
be large. In particular, we would like to find a mask m as-
signing to each pixel u € §2 a value m(u) € {0, 1}, where
m(u) = 1 means that the pixel strongly contributes to the
output and m(u) = 0 that it does not.

In order to assess the importance of a pixel, we use the
mask to induce a local perturbation of the image, denoted
& = m ® x. The details of the perturbation model are
discussed below, but for now it suffices to say that pixels
for which m(u) = 1 are preserved, whereas the others are
blurred away. The goal is then to find a small subset of
pixels that, when preserved, are sufficient to retain a large
value of the output &(m ® x).

Fong and Vedaldi [7] propose to identify such salient
pixels by solving an optimization problem of the type:

my g = argmax d(m ® ) — A|m|; — BS(m). (1)

The first term encourages the network’s response to be
large. The second encourages the mask to select a small
part of the input image, blurring as many pixels as possible.
The third further regularises the smoothness of the mask by
penalising irregular shapes.

The problem with this formulation is that the meaning
of the trade-off established by optimizing eq. (1) is unclear
as the three terms, model response, mask area and mask
regularity, are not commensurate. In particular, choosing
different A and /3 values in eq. (1) will result in different
masks without a clear way of comparing them.

3.2. Extremal perturbations

In order to remove the balancing issues with eq. (1), we
propose to constrain the area of the mask to a fixed value
(as a fraction a|Q2| of the input image area). Furthermore,
we control the smoothness of the mask by choosing it in a
fixed set M of sufficiently smooth functions. Then, we find
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Figure 3: Extremal perturbations and monotonic effects. Left: “porcupine” masks computed for several areas a (a in
box). Right: ®(m, ® x) (preservation; blue) and ®((1 —m,) ® x) (deletion; orange) plotted as a function of a. Ata ~ 15%
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the mask of that size that maximizes the model’s output:

m, = argmax P(m ® x). 2)

m: ||ml|1=alQ2|, meM

Note that the resulting mask is a function of the chosen area
a only. With this, we can define the concept of extremal
perturbation as follows. Consider a lower bound ®( on the
model’s output (for example we may set &9 = 7P (x) to
be a fraction 7 of the model’s output on the unperturbed
image). Then, we search for the smallest mask that achieves
at least this output level. This amounts to sweeping the area
parameter a in eq. (2) to find

a* =min{a : ®(m, @ x) > Pp}. 3)

The mask m,~ is extremal because preserving a smaller
portion of the input image is not sufficient to excite the net-
work’s response above ®. This is illustrated in fig. 3.

Interpretation. An extremal perturbation is a single mask
m~ that results in a large model response, in the sense that
®(my+ @ &) > Dy. However, due to extremality, we also
know that any smaller mask does not result in an equally
large response: Vm : ||m|; < ||[mg-]1 = P(m @ x) <
®(. Hence, a single extremal mask is informative because it
characterises a whole family of input perturbations.

This connects extremal perturbations to methods
like [21, 7], which explain a network by finding a succinct
and interpretable description of its input-output mapping.
For example, the gradient [23] and LIME [2 1] approximate
the network locally around an input « using the Taylor ex-
pansion ®(x') = (V®(x),x’ — x) + ®(x); their explana-
tion is the gradient V& () and their perturbations span a
neighbourhood of x.

Preservation vs deletion. Formulation (2) is analogous to
what [7] calls the “preservation game” as the goal is to find a
mask that preserves (maximises) the model’s response. We
also consider their “deletion game” obtaining by optimising
®((1—m)®x) in eq. (2), so that the goal is to suppress the
response when looking outside the mask, and the hybrid [5],

obtained by optimising ®(m®z)—®((1—m)®x), where
the goal is to simultaneously preserve the response inside
the mask and suppress it outside

3.3. Area constraint

Enforcing the area constraint in eq. (2) is non-trivial;
here, we present an effective approach to do so (other ap-
proaches like [10] do not encourage binary masks). First,
since we would like to optimize eq. (2) using a gradient-
based method, we relax the mask to span the full range
[0,1]. Then, a possible approach would be to count how
many values m(u) are sufficiently close to the value 1 and
penalize masks for which this count deviates from the target
value a|Q2|. However, this approach requires soft-counting,
with a corresponding tunable parameter for binning.

In order to avoid such difficulties, we propose instead
to vectorize and sort in non-decreasing order the values of
the mask mm, resulting in a vector vecsort(m) € [0, 1]/,
If the mask m satisfies the area constraint exactly, then the
output of vecsort(m) is a vector r,, € [0, 1]1*/ consisting of
(1 —a)|Q2| zeros followed by a|€2| ones. This is captured by
the regularization term: R,(m) = || vecsort(m) — r,||?.
We can then rewrite eq. (2) as

m, = argmax ®(m @ x) — AR, (m). 4)
meM

Note that we have reintroduced a weighting factor A in the
formulation, so on a glance we have lost the advantage of
formulation (2) over the one of eq. (1). In fact, this is not
the case: during optimization we simply set A to be as large
as numerics allow it as we expect the area constraint to be
(nearly) exactly satisfied; similarly to a logarithmic barrier,
A then has little effect on which mask m,, is found.

3.4. Perturbation operator

In this section we define the perturbation operator m ®
x. To do so, consider a local perturbation operator
n(z;u,0) € R? that applies a perturbation of intensity
o > 0to pixel u € Q. We assume that the lowest inten-
sity ¢ = 0 corresponds to no perturbation, i.e. m(x; u,0) =



x(u). Here we use as perturbations the Gaussian blur?

Scatolu—ve@)
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The mask m then doses the perturbation spatially: (m ®
x)(u) = 7(@; U, Omax - (1 —m(u))) where o is the max-
imum perturbation intensity.>

mg(x;u,0) =

3.5. Smooth masks

Next, we define the space of smooth masks M. For this,
we consider an auxiliary mask m : Q — [0,1]. Given
that the range of m is bounded, we can obtain a smooth
mask m by convolving m by a Gaussian or similar kernel
k : Q — R_,* via the typical convolution operator:

m(u) =21 k(u—v)m(v) 5)

vEQ

where Z normalizes the kernel to sum to one. However, this
has the issue that setting m(u) = 1 does not necessarily
result in m(u) = 1 after filtering, and we would like our
final mask to be (close to) binary.

To address this issue, we consider the max-convolution
operator:

m(u) = max k(u — v)m(v). ©6)
vEQ

This solves the issue above while at the same time guar-
anteeing that the smoothed mask does not change faster
than the smoothing kernel, as shown in the following lemma
(proof in supp. mat.).

Lemma 1. Consider functions m,k : Q — [0, 1] and let
m be defined as in eq. (6). If k(0) = 1, then m(u) <
m(u) < 1forall u € Q; in particular, if m(u) = 1, then
m(u) = 1 as well. Furthermore, if k is Lipschitz contin-
uous with constant K, then m is also Lipschitz continuous
with a constant at most as large as K.

The max operator in eq. (6) yields sparse gradients.
Thus, to facilitate optimization, we introduce the smooth
max operator’, smax, to replace the max operator. For a
function f(u),u € 2 and temperature 7' > 0:

>ueq f(uw) exp f(u)/T
2ueqexp f(u)/T

2 Another choice is the fade-to-black perturbation which, for 0 < ¢ <
1,is given by 7y (x;u,0) = (1 — o) - &(u).

3 For efficiency, this is implemented by generating a perturbation pyra-
mid 7(x; -, omax - I/L), 1 = 0,..., L that contains L + 1 progressively
more perturbed versions of the image. Then m ® @ can be computed via
bilinear interpolation by using (u, m(u)) as an indices in the pyramid.

“It is easy to show that in this case the derivative of the smoothed mask
IV (k * m)||| < ||VEk| is always less than the one of the kernel.

5Not to be confused with the softmax with temperature, as in [9].
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Figure 4: Convolution operators for smooth masks.
Gaussian smoothing a mask (blue) with the typical convolu-
tion operator yields a dampened, smooth mask (green). Our
max-convolution operator mitigates this effect while still
smoothing (red solid). Our smax operator, which yields
more distributed gradients than max, varies between the
other two convolution operators (red dotted).

The smax operator smoothly varies from behaving like the
mean operator in eq. (5) as ' — oo to behaving like the
max operator as T" — 0 (see fig. 4). This operator is used
instead of max in eq. (6).

Implementation details. In practice, we use a smaller
parameterization mask 7m defined on a lattice Q =
{0,..., H—1}x{0,...,W —1}, where the full-resolution
mask m has dimensions H = pH and W = pW. We then
modify (6) to perform upsampling in the same way as the
standard convolution transpose operator.

4. Experiments

Implementation details. Unless otherwise noted, all vi-
sualizations use the ImageNet validation set, the VGG16
network and the preservation formulation (Sec. 3.2).
Specifically, ®(x) is the classification score (before soft-
max) that network associates to the ground-truth class
in the image. Masks are computed for areas a €
{0.05,0.1,0.2,0.4, 0.6, 0.8}. To determine the optimal area
a* of the extremal perturbations (3), we set the threshold
&y = ®(x) (which is the score on the unperturbed image).

Masks are optimised using SGD, initializing them with
all ones (everything preserved). SGD uses momentum 0.9
and 1600 iterations. A is set to 300 and doubled at 1/3
and 2/3 of the iterations and, in eq. (7), 1/T ~ 20. Be-
fore upsampling, the kernel k(u) = k(||u||) is a radial ba-
sis function with profile k(z) = exp (max{0,z — 1}2/4),
chosen so that neighbour disks are centrally flat and then
decay smoothly.

4.1. Qualitative comparison

Figure 2 shows a qualitative comparison between our
method and others. We see that our criterion of &y = ®(x)
chooses fairly well-localized masks in most cases. Masks
tend to cover objects tightly, are sharp, and clearly identify a
region of interest in the image. Figure 5 shows what the net-
work considered to be most discriminative (a = 5%; e.g.,



Figure 5: Area growth. Although each mask is learned
independently, these plots highlight what the network con-
siders to be most discriminative and complete. The bar
graph visualizes ®(m, ® x) as a normalized fraction of
&y = ®(x) (and saturates after exceeding ®( by 25%).

garter snake spoonbill tripod freight car

Figure 6: Comparison with [7]. Our extremal perturba-
tions (top) vs. masks from Fong and Vedaldi [7] (bottom).

banjo fret board, elephant tusk) and complete (a = 20%) as
the area increases. We notice that evidence from several ob-
jects accumulates monotonically (e.g., impala and spider)
and that foreground (e.g., ostrich) or discriminative parts
(e.g., dog’s nose) are usually sufficient.

convs_ 1

conv3 1 conv2 1 convl 1

Figure 7: Sanity check [2]. Model weights are progres-
sively randomized from fc8 to convl_1 in VGG16, demon-
strating our method’s sensitivity to model weights.

VOCO7 Test (All/Diff) COCO14 Val (All/Diff)
Method VGGI16 ResNet50 VGGI6  ResNet50

Cntr.  69.6/42.4 69.6/42.4 27.8/19.5 27.8/19.5
Grad  76.3/56.9 72.3/56.8 37.7/31.4 35.0/29.4
DConv 67.5/44.2 68.6/44.7 30.7/23.0 30.0/21.9
Guid.  75.9/53.0 77.2/59.4 39.1/31.4 42.1/35.3

MWP 77.1/56.6 84.4/70.8 39.8/32.8 49.6/43.9
cMWP 79.9/66.5 90.7/82.1 49.7/44.3 58.5/53.6
RISE* 86.9/75.1 86.4/78.8 50.8/45.3 54.7/50.0

GCAM 86.6/74.0 90.4/82.3 54.2/49.0 57.3/52.3
Ours*  88.0/76.1 88.9/78.7 51.5/45.9 56.5/51.5

Table 1: Pointing game. Mean accuracy on the pointing
game over the full data splits and a subset of difficult images
(defined in [32]). Results from PyTorch re-implementation
using TorchRay package (* denotes average over 3 runs).

In fig. 6, we compare our masks to those of Fong
and Vedaldi [7]. The stability offered by controlling the
area of the perturbation is obvious in these examples.
Lastly, we visualize a sanity check proposed in Adebayo
et al. [2] in fig. 7 (we use the “hybrid” formulation). Un-
like other backprop-based methods, our visualizations be-
come significantly different upon weight randomization
(see supp. mat. for more qualitative examples).

4.2. Pointing game

A common approach to evaluate attribution methods is
to correlate their output with semantic annotations in im-
ages. Here we consider in particular the pointing game of
Zhang et al. [32]. For this, an attribution method is used
to compute a saliency map for each of the object classes
present in the image. One scores a hit if the maximum point
in the saliency map is contained within the object; The over-
all accuracy is the number of hits over number of hits plus
misses.

Table 1 shows results for this metric and compares our
method against the most relevant work in the literature on
PASCAL VOC [6] (using the 2007 test set of 4952 images)
and COCO [12] (using the 2014 validation set of ~ 50k im-



ages). We see that our method is competitive with VGG16
and ResNet50 networks. In contrast, Fong and Vedaldi’s [7]
was not competitive in this benchmark (although they re-
ported results using GoogLeNet).

Implementation details. Since our masks are binary,
there is no well defined maximum point. To ap-
ply our method to the pointing game, we thus run
it for areas {0.025,0.05,0.1,0.2} for PASCAL and
{0.018,0.025,0.05,0.1} for COCO (due to the smaller ob-
jects in this dataset). The binary masks are summed and a
Gaussian filter with standard deviation equal to 9% of the
shorter side of the image applied to the result to convert it
to a saliency map. We use the original Caffe models of [32]
converted to PyTorch and use the preservation formulation
of our method.

4.3. Monotonicity of visual evidence

Eq. (2) implements the “preservation game” and
searches for regions of a given area that maximally activate
the networks’ output. When this output is the confidence
score for a class, we hypothesise that hiding evidence from
the network would only make the confidence lower, i.e., we
would expect the effect of maximal perturbations to be or-
dered consistently with their size:

ar < ay = @(mal ® 213) < <I>(ma2 ®£I§) (8)

However, this may not always be the case. In order to quan-
tify the frequency of this effect, we test whether eq. (8)
holds for all a;,a2 < a*, where a* is the optimal area of
the extremal perturbation (eq. (3), where &y = ®(x)). Em-
pirically, we found that this holds for 98.45% of ImageNet
validation images, which indicates that evidence is in most
cases integrated monotonically by the network.

More generally, our perturbations allow us to sort and
investigate how information is integrated by the model in
order of importance. This is shown in several examples
in fig. 5 where, as the area of the mask is progressively in-
creased, different parts of the objects are prioritised.

5. Attribution at intermediate layers

Lastly, we extend extremal perturbations to the direct
study of the intermediate layers in neural networks. This
allows us to highlight a novel use case of our area loss and
introduce a new technique for understanding which chan-
nels are salient for classification.

As an illustration, we consider in particular channel-wise
perturbations. Let ®;(x) € RE*HixWi be the intermedi-
ate representation computed by a neural network & up to
layer [ and let ®;, : RE:<HixWi 4 R represent the rest of
model, from layer [ to the last layer. We then re-formulate
the preservation game from eq. (4) as:

m, = argmax &, (m @ ®;(x)) — AR, (m). (9
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Figure 8: Attribution at intermediate layers. Left: This
is visualization (eq. (11)) of the optimal channel attribution
mask m, where a* = 25 channels, as defined in eq. (10).
Right: This plot shows that class score monotonically in-
creases as the area (as the number of channels) increases.

Here, the mask m € [0,1]% is a vector with one element
per channel which element-wise multiplies with the activa-
tions ®;(x), broadcasting values along the spatial dimen-
sions. Then, the extremal perturbation m,~ is selected by
choosing the optimal area

a* =min{a : ;4 (M, @ Y(x)) > Po}.  (10)

We assume that the output @, is the pre-softmax score for
a certain image class and we set the &y = ®(x) to be the
model’s predicted value on the unperturbed input (fig. 8).

Implementation details. In these experiments, we use
GoogLeNet [27] and focus on layer | =inception4d,
where H; = 14, W; = 14, K; = 528. We optimize eq. (9)
for 300 iterations with a learning rate of 102, The pa-
rameter A linearly increases from 0 to 1500 during the first
150 iterations, after which A = 1500 stays constant. We
generate channel-wise perturbation masks for areas a €
{1, 5,10, 20, 25, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200,
250, 300, 350, 400, 450, 528}, where a denotes the number
of channels preserved.

The saliency heatmaps in fig. 8 and fig. 9 for channel-
wise attribution are generated by summing over the channel
dimension the element-wise product of the channel attribu-
tion mask and activation tensor at layer [:

v=">Y mf ©f(x) (11)
keK

5.1. Visualizing per-instance channel attribution

Unlike per-instance input-level spatial attribution, which
can be visualized using a heatmap, per-instance interme-
diate channel attribution is more difficult to visualize be-
cause simply identifying important channels is not neces-
sarily human-interpretable. To address this problem, we use
feature inversion [15, 19] to find an image that maximises
the dot product of the channel attribution vector and the ac-
tivation tensor (see [19] for more details):
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Figure 9: Per-instance channel attribution visualiza-
tion. Left: input image overlaid with channel saliency map
(eq. (11)). Middle: feature inversion of original activation
tensor. Right: feature inversion of activation tensor per-
turbed by optimal channel mask m,-. By comparing the
difference in feature inversions between un-perturbed (mid-
dle) and perturbed activations (right), we can identify the
salient features that our method highlights.

I = argrlnax{(ma* ® Dy(x)) - P1(1)} (12)

where m, is optimal channel attribution mask at layer [ for
input image x and ®;([) is the activation tensor at layer I
for image I, the image we are learning.

This inverted image allows us to identify the parts of the
input image that are salient for a particular image to be cor-
rectly classified by a model. We can compare the feature in-
versions of activation tensors perturbed with channel mask
(right column in fig. 9) to the inversions of original, unper-
turbed activation tensors (middle column) to get a clear idea
of the most discriminative features of an image.

Since the masks are roughly binary, multiplying m with
the activation tensor ®;(x) in eq. (12) zeroes out non-salient
channels. Thus, the differences in the feature inversions of
original and perturbed activations in fig. 9 highlight regions
encoded by salient channels identified in our attribution
masks (i.e., the channels that are not zeroed out in eq. (12)).

channel 466
chickadee

channel 124
African elephant

Figure 10: Discovery of salient, class-specific channels.
By analyzing m., the average over all m,- for class ¢
(see Sec. 5.2), we automatically find salient, class-specific
channels like these. First column: channel feature inver-
sions; all others: dataset examples.

5.2. Visualizing per-class channel attribution

‘We can also use channel attribution to identify important,
class-specific channels. In contrast to other methods, which
explicitly aim to find class-specific channels and/or direc-
tions at a global level [8, 11, 34], we are able to similarly
do so “for free” using only our per-instance channel attri-
bution masks. After estimating an optimal masks m,~ for
all ImageNet validation images, we then create a per-class
attribution mask . € [0,1]% by averaging the optimal
masks of all images in a given class c. Then, we can iden-
tify the most important channel for a given class as follows:
ki = argmax;c, mF. In fig. 10, we visualize two such
channels via feature inversions. Qualitatively, these feature
inversions of channels £ are highly class-specific.

6. Conclusion

We have introduced the framework of extremal pertur-
bation analysis, which avoids some of the issues of prior
work that use perturbations to analyse neural networks. We
have also presented a few technical contributions to com-
pute such extremal perturbation. Among those, the rank-
order area constraint can have several other applications
in machine learning beyond the computation of extremal
perturbations. We have extended the perturbations frame-
work to perturbing intermediate activations and used this to
explore a number of properties of the representation cap-
tured by a model. In particular, we have visualized, likely
for the first time, the difference between perturbed and un-
perturbed activations using a representation inversion tech-
nique. Lastly, we released TorchRay [1], a PyTorch in-
terpretability library in which we’ve re-implemented popu-
lar methods and benchmarks to encourage reproducible re-
search.
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A. Implementation details
A.1. Generating smooth masks

We implement the equation:
m(u) = pool; g(u — ui)m;

Here ¢ = 0,..., N — 1 are samples of the input mask, v =
0,...,W — 1 samples ouf the output mask, and u; is the
mapping between input and output samples, u; = ai + b.
We assume that the kernel k has a “radius” o, in the sense
that only samples |u — u;| < o matter.

In order to compute this expansion fast, we use the un-
pool operator. In order to do so, unpool is applied to m with
window K = 2R + 1 and padding P. This results in the
signal

my; =miyp-p, 0<i<W =1, 0<E<K -1,
W' =N—-K+2P +1.

We then use nearest-neighbour upsampling in order to bring
this signal in line with the resolution of the output:

0<u<W” -1,
0<k<K-1.

"
Mpy = M| L|4k—P>

Here the upsampling factor is given by s = W /W', In
PyTorch, we specify upsampling via the input size W' and
the output size W, so we need to choose W' appropriately.

To conclude, we do so as follows. We choose a o (kernel
width in image pixels) and and s (kernel step in pixels). We
also choose a margin b > 0 to avoid border effects and set
a = s. With this, we see that computing /() requires
samples:

u—oc<u;, <u+t+o

U a—i-bgl_gg_i_a—b
s

S S S

On the other hand, at location u in mj, , we have pooled
samples m; for which:
2] -pPzic|f)+Kx-1-P
s s
Hence we require

{EJ—P<E—U+Z) N P20+b+{EJ—E.
s s s

P14+ ’VU + bw
s
The other bound is:
3+U_bgvﬁ+K71fR
s s s

Hence:
+P+1

k22 [2)esst

Hence, conservatively we take:

ene [0 ]

S

Since K = 2R + 1 and b = o, we set
R=1+[5]

s
In this way, we obtain a pooled mask:

"
pOOI gk’,umk’uv

() = pool g(u — u:) m; =
i 0<k<K-—1

where
Uu
Iku = g(u - ﬂ(uv k))7 ﬂ(u7 k) = {;J +k—P.

Hence, the steps are: given the input mask parameters m;,
use unpooling to obtain m}, , and then upsampling to obtain
mgyu. Then use the equation above to pool using a pre-
computed weights gi .

Generally, the input to the mask generator are: s, o and
the desired mask m(u) width W. So far, we have obtained
a mask 7m(u) with with W, where W"” = sW' is chosen to
obtain the correct scaling factorand W/ = N — K +2P+1.
As a rule of thumb, we set N = [W/s] in order to spread
the N samples at regular interval over the full stretch W.
We then set R, K, P, W’ and W' according to the formulas
above. Once m(u) is obtained, we take a W-sized crop
shifted by b pixels to obtain the final mask 7i(u).

B. Supplementary Materials

The full supplementary materials for this paper can be
found at ruthcfong.github.io/files/fongl9_
extremal_supps.pdf.
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Abstract

A large part of the current success of deep learning lies in the effectiveness of
data — more precisely: labelled data. Yet, labelling a dataset with human anno-
tation continues to carry high costs, especially for videos. While in the image
domain, recent methods have allowed to generate meaningful (pseudo-) labels
for unlabelled datasets without supervision, this development is missing for the
video domain where learning feature representations is the current focus. In this
work, we a) show that unsupervised labelling of a video dataset does not come
for free from strong feature encoders and b) propose a novel clustering method
that allows pseudo-labelling of a video dataset without any human annotations, by
leveraging the natural correspondence between the audio and visual modalities.
An extensive analysis shows that the resulting clusters have high semantic overlap
to ground truth human labels. We further introduce the first benchmarking results
on unsupervised labelling of common video datasets Kinetics, Kinetics-Sound,
VGG-Sound and AVE?.

1 Introduction

One of the key tasks in machine learning is to convert continuous perceptual data such as images
and videos into a symbolic representation, assigning discrete labels to it. This task is generally for-
mulated as clustering [31]. For images, recent contributions such as [6, 13, 37, 72] have obtained
good results by combining clustering and representation learning. However, progress has been more
limited for videos, which pose unique challenges and opportunities. Compared to images, videos
are much more expensive to annotate; at the same time, they contain more information, including
a temporal dimension and two modalities, aural and visual, which can be exploited for better clus-
tering. In this paper, we are thus interested in developing methods to cluster video datasets without
manual supervision, potentially reducing the cost and amount of manual labelling required for video
data.

Just as for most tasks in machine learning, clustering can be greatly facilitated by extracting a suit-
able representation of the data. However, representations are usually learned by means of manually
supplied labels, which we wish to avoid. Inspired by [79], we note that a solution is to consider one
of the recent state-of-the-art self-supervised representation learning methods and apply an off-the-
shelf clustering algorithm post-hoc. With this, we show that we can obtain very strong baselines for
clustering videos.

*Joint first authors
2Code will be made available at https://github.com/facebookresearch/selavi
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Still, this begs the question of whether even better performance could be obtained by simultaneously
learning to cluster and represent video data. Our main contribution is to answer this question
affirmatively and thus to show that good clusters do not come for free from good representations.

In order to do so, we consider the recent method SeLa [6], which learns clusters and representations
for still images by solving an optimal transport problem, and substantially improve it to work with
multi-modal data. We do this in three ways. First, we relax the assumption made in [6] that clusters
are equally probable; this is not the case for semantic video labels, which tend to have a highly-
skewed distribution [1, 29, 41], and extend the algorithm accordingly. Second, we account for the
multi-modal nature of video data, by formulating the extraction of audio and visual information from
a video as a form of data augmentation, thus learning a clustering function which is invariant to such
augmentations. For this to work well, we also propose a new initialization scheme that synchronizes
the different modalities before clustering begins. This encourages clusters to be more abstract and
thus ‘semantic’ and learns a redundant clustering function which can be computed robustly from
either modality (this is useful when a modality is unreliable, because of noise or compression).
Third, since clustering is inherently ambiguous, we propose to learn multiple clustering functions in
parallel, while keeping them orthogonal, in order to cover a wider space of valid solutions.

With these technical improvements, our method for Self-Labelling Videos (SeLaVi) substantially
outperforms the post-hoc approach [79], SeLa [6] applied to video frames, as well as a recent multi-
modal clustering-based representation learning method, XDC [2]. We evaluate our method by test-
ing how well the automatically learned clusters match manually annotated labels in four different
video datasets: VGG-Sound [17], AVE [68], Kinetics [41] and Kinetics-Sound [3]. We show that
our proposed model results in substantially better clustering performance than alternatives. For ex-
ample, our method can perfectly group 32% of the videos in the VGG-Sound dataset and 55% in the
AVE dataset without using any labels during training. Furthermore, we show that, while some clus-
ters do not align with the ground truth classes, they are generally semantically meaningful (e.g. they
contain similar background music) and provide an interactive cluster visualization®.

In a nutshell, our key contributions are: (i) establishing video clustering benchmark results on four
datasets for which labels need to be obtained in an unsupervised manner; (ii) developing and as-
sessing several strong clustering baselines using state-of-the-art methods for video representation
learning, and (iii) developing a new algorithm tailored to clustering multi-modal data resulting in
state-of-the-art highly semantic labels.

2 Related work

Unsupervised labelling for images. Early approaches to clustering images include agglomerative
clustering [9] and partially ordered sets of hand-crafted features [10], while more recent methods
combine feature learning with clustering. First, there are methods which propose to implicitly learn
a clustering function by maximizing mutual information between the image and nuisance transfor-
mations [35, 37]. Second, there are methods which use explicit clustering combined with represen-
tation learning [6, 13, 14, 16, 48, 77, 80]. Lastly, there are methods which build on strong feature
representations and, at a second stage, utilize these to obtain clusters [47, 72, 79].

Representation learning from videos. There is a growing literature on representation learning
from videos. Many of these methods are uni-modal, leveraging works from the image domain [5,
8, 18, 26, 27, 56, 57, 69, 75, 81], such as predicting rotations [39] and 3D jigsaw puzzles [42].
Other works leverage temporal information explicitly and predict future features [30], the order
of frames [46, 53] and clips [78], the direction of time [74] or the framerate [11, 19]. However,
videos usually contain multiple modalities, such as audio, speech and optical flow. Multi-modal
learning, originally proposed by de Sa [22], has seen a resurgence with the goal of learning strong
feature representations that can be used for finetuning on downstream tasks. Most works leverage
audio-visual semantic correspondence [3, 7, 59, 60] or the synchronized timing of content [43, 58]
between the audio and visual streams. Some works use this information to obtain within-clip sound
localisation [4, 34, 58, 63, 64, 82] as well as audio-separation [15, 25]. Other methods use a modality
distillation framework to learn video encoders from other modalities [59, 61]. In [61], a loss function
is meta-learned by computing common self-supervised losses and distilling these and clustering is

Shttps://www.robots.ox.ac.uk/ vgg/research/selavi
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Figure 1: Our model views modalities as different augmentations and produces a multi-modal
clustering of video datasets from scratch that can closely match human annotated labels.

used as an evaluation metric for meta-learning. New methods have started to learn even stronger
representations by using ASR generated text from videos as another modality [49, 52, 55, 66, 67].

Clustering videos. Perhaps the simplest way of combining representation learning and clustering
in videos is to apply post-hoc a clustering algorithm after pretraining a representation. In Cluster-
Fit [79], the authors show that running a simple k-means algorithm on the features from a pretrained
network on the pretraining dataset yields small but consistent gains for representation learning when
these clusters are used as labels and the networks are retrained. While in [79], the authors found the
optimal number of clusters to consistently be at least one order of magnitude higher than the number
of ground-truth labels, we investigate applying this method on various pretrained methods as base-
lines for our task of labelling an unlabelled video dataset. Specifically, we apply k-means on state-
of-the-art single modality models such as DPC [30] and MIL-NCE [52], as well the multi-modal
model XDC [2], which itself uses k-means on the audio and visual streams to learn representations.
However, they do this as a pretext task for representation learning and obtain separate clusters for
audio and video. In contrast, our goal is multi-modally labelling an unlabelled dataset, and we find
that our method works significantly better at this task.

3 Method

Given a dataset D = {wi}ie{l,.“, N} of multi-modal data x;, our goal is to learn a labelling function
y(x) € {1,..., K} without access to any ground-truth label annotations. There are two require-
ments that the labelling function must satisfy. First, the labels should capture, as well as possible, the
semantic content of the data, in the sense of reproducing the labels that a human annotator would
intuitively associate to the videos. As part of this, we wish to account for the fact that semantic
classes are not all equally probable, and tend instead to follow a Zipf distribution [1, 41]. We then
evaluate the quality of the discovered labels by matching them to the ones provided by human an-
notators, using datasets where ground-truth labels are known. The second requirement is that the
labelling method should not overly rely on a single modality. Instead, we wish to treat each modality
as equally informative for clustering. In this way, we can learn a more robust clustering function,
which can work from either modality. Furthermore, correlating of modalities has been shown to be
a proxy to learn better abstractions [4, 43, 58, 60].

While our method can work with any number of data modalities (vision, audio, depth, textual tran-
scripts, ...), we illustrate it under the assumption of video data * = (a,v), comprising an audio
stream a and a visual stream v. The following two sections describe our method in detail and show
how it meets our requirements.

3.1 Non-degenerate clustering via optimal transport

In this section, we briefly summarize the formulation of [6] to interpret clustering as an optimal
transport problem. SeLa [6] is a method that learns representations via clustering images. The
labelling function can be expressed as the composition y(V(x)), where z = ¥(x) is a data repre-
sentation (i.e. a feature extractor implemented by a deep neural network), and y(z) € {1,..., K}
operates on top of the features rather than the raw data.

Any traditional clustering algorithm, such as k-means or Gaussian mixture models, defines an energy
function F(y) that, minimized, gives the best data clustering function y. When the representation is
accounted for, the energy F(y, V) is a function of both y and ¥, and we may be naively tempted to



optimize over both. However, this is well known to yield unbalanced solutions, which necessitates
ad-hoc techniques such as non-uniform sampling or re-initialization of unused clusters [13, 14].
Theoretically, in fact, for most choices of E, the energy is trivially minimized by the representation
W that maps all data to a constant.

Asano et al. [6] address this issue by constraining the marginal probability distributions of the clus-
ters to be uniform, and show that this reduces to an optimal transport problem. The algorithm
then reduces to alternating the fast Sinkhorn-Knopp algorithm [21] for clustering, and standard neu-
ral network training for representation learning. To do this, one introduces the cross-entropy loss
E(q,p), between the labels given as one-hot vectors in ¢ (i.e. g(y(x)) = 1 Vz) and the softmax
outputs p of a network W:

N K
1
E(p,q) == > Y_alyle:)logp(ylz:), p(yla:) = softmax ¥(x;), (1)

z:l y=1

where K is the number of clusters. This energy is optimized under the constraint that the marginal

cluster probability Zfil ﬁp(y|mz) = % is constant (meaning all clusters are a-priori equally
likely). Note that minimizing F with respect to p is the same as training the deep network ¥ using
the standard cross-entropy loss.

Next, we show that mlnlmlzmg E(p, q) w.rt. the label assignments ¢ results in an optimal transport
problem. Let Py; = p(y|azz) be the K x N matrix of joint probabilities estimated by the model
and Qy; = q(y|ar:,) % be K x N matrix of assigned joint probabilities. Matrix @ is relaxed to be an
element of a transportation polytope

U(r,e) ={Q eRE*N |Ql=r, Q"1 =¢}, r=1/K, c=1/N. )

where 1 are vectors of ones, and r and ¢ the marginal projections of matrix () onto its clusters and
data indices, respectively. Finally, optimizing E(P, Q) w.r.t. to @ € U(r,c) is a linear optimal
transport problem, for which [21] provides a fast, matrix-vector multiplication based solution.

3.2 Clustering with arbitrary prior distributions

A shortcoming of the algorithm just described is the assumption that all clusters are equally proba-
ble. This avoids converging to degenerate cases but is too constraining in practice since real datasets
follow highly skewed distributions [1, 41], and even in datasets that are collected to be uniform, they
are not completely so [17, 41, 68]. Furthermore, knowledge of the data distribution, for example
long-tailedness, can be used as additional information (e.g. as in [61] for meta-learning) that can im-
prove the clustering by allocating the right number of data points to each cluster. Next, we describe
a mechanism to change this distribution arbitrarily.

In the algorithm above, changing the label prior amounts to choosing a different cluster marginal r
in the polytope U(r, ¢). The difficulty is that 7 is only known up to an arbitrary permutation of the
clusters, as we do not know a-priori which clusters are more frequent and which ones less so. To
understand how this issue can be addressed, we need to explicitly write out the energy optimised by
the Sinkhorn-Knopp (SK) algorithm [21] to solve the optimal transport problem. This energy is:

1
i —log P) + =~ KL T 3
Qé?ﬁ(?,@@’ og P) + 3 @Qllre ), 3)

where ) is a fixed parameter. Let v’ = Rr where R is a permutation matrix matching clusters to
marginals. We then seek to optimize the same quantity w.r.t. R, obtaining the optimal permutation
as R* = argminy F(R) where

E(R) =(Q,—1log P) + }\KL(QHRT‘CT) = const + Z q(y) [Rlogr]y. 4)
y

While there is a combinatorial number of permutation matrices, we show that minimizing Eq. (4)
can be done by first sorting classes y in order of increasing q(y), so thaty > y' = q(y) > q(3/'), and



then finding the permutation that R that also sorts [R log ], in increasing order.* We conclude that
R cannot be optimal unless it sorts all pairs. After this step, the SK algorithm can be applied using
the optimal permutation R*, without any significant cost (as solving for R is equivalent to sorting
O(Klog K) with K < N). The advantage is that it allows to choose any marginal distribution,
even highly unbalanced ones which are likely to be a better match for real world image and video
classes than a uniform distribution.

3.3 Multi-modal single labelling

Next, we tackle our second requirement of extracting as much information as possible from multi-
modal data. In principle, all we require to use the clustering formulation Eq. (1) with multi-modal
data ¢ = (a,v) is to design a corresponding multi-modal representation ¥(x) = ¥(a, v). However,
we argue for multi-modal single labelling instead. By this, we mean that we wish to cluster data one
modality at a time, but in a way that is modality agnostic. Formally, we introduce modality splicing
transformations [60] t,(x) = a and t,(x) = v and use these as data augmentations. Recall that
augmentations are random transformations ¢ such as rotating an image or distorting an audio track
that one believes should leave the label/cluster invariant. We thus require our activations used for
clustering to be an average over augmentations by replacing matrix log P with

[log Ply; = E¢[log softmax, ¥(tx;)]. (6)

If we consider splicing as part of the augmentations, we can learn clusters that are invariant to
standard augmentations as well as the choice of modality. In practice, to account for modality
splicing, we define and learn a pair ¥ = (¥, ¥,,) of representations, one per modality, resulting in
the same clusters (U, (t,(x)) ~ U, (¢,(x))). This is illustrated in Figure 1.

Initialization and alignment. Since networks ¥, and ¥, are randomly initialized, at the begin-
ning of training their output layers are de-synchronized. This means that there is no reason to believe
that U, (¢, (x))) ~ U, (t,(x)) simply because the order of the labels in the two networks is arbi-
trary. Nevertheless, in many self-supervised learning formulations, one exploits the fact that even
randomly initialized networks capture a useful data prior [71], which is useful to bootstrap learning.

In order to enjoy a similar benefit in our formulation, we propose to synchronise the two output
layers of ¥, and U, before training the model. Formally, we wish to find the permutation matrix
R that, applied to the last layer of one of the two encoders maximizes the agreement with the other
(still leaving all the weights to their initial random values). For this, let W, and W, be the last layer
weight matrices of the two networks,” such as ¥, (a) = W,¥,(a) and ¥, (v) = W, ¥, (v). We find
the optimal permutation R by solving the optimisation problem:

N
min > |softmax(RW, W4 (ta(:))) — softmax(W, B, (£, (2:)))] , (7)
i=1

In order to compare softmax distributions, we choose |- | as the 1-norm, similar to [33]. We optimize
Eq. (7) with a greedy algorithm: starting with a feasible solution and switching random pairs when
they reduce the cost function [20], as these are quick to compute and we do not require the global
minimum. Further details are given in Appendix A.3. With this permutation, the weight matrix of
the last layer of one network can be resorted to match the other.

Decorrelated clustering heads. Conceptually, there is no single ‘correct’ way of clustering a
dataset: for example, we may cluster videos of animals by their species, or whether they are taken
indoor or outdoor. In order to alleviate this potential issue, inspired by [6, 37], we simply learn

*To see why this is optimal, and ignoring ties for simplicity, let R be any permutation and construct a
permutation R by applying R and then by further swapping two labels y > y’. We can relate the energy of R
and R as:

E(R) = E(R) +q(y)[Rlogr]y + q(y)[Rlogr], — q(y)[Rlogr], — q(y')[Rlogr],
= E(R) + (a(y) — q(y")) ([Rlog ], — [Rlog7],).
Since the first factor is positive by assumption, this equation shows that the modified permutation R has a lower

energy than R if, and only if, [Rlog ], > [Rlog ]/, which means that R sorts the pair in increasing order.
>We assume that the linear layer biases are incorporated in the weight matrices.

(&)



multiple labelling functions ¥, using multiple classification heads for the network. We improve this
scheme as follows. In each round of clustering, we generate two random augmentations of the data.
Then, the applications of SK to half of the heads (at random) see the first version, and the other half
the second version, thus increasing the variance of the resulting clusters. This increases the cost of
the algorithm by only a small amount — as more time is used for training instead of clustering.

4 Experiments

The experiments are divided into three parts. First, in Section 4.1, we analyze the need for using
both modalities when clustering and investigate the effect of our individual technical contributions
via ablations and comparison to other approaches. Second, in Section 4.2, we demonstrate how our
method achieves its stated goal of labelling a video dataset without human supervision. Third, in
Section 4.3, we show that a side effect of our method is to learn effective audio-visual representations
that can be used for downstream tasks e.g.video action retrieval, establishing a new state of the art.

Datasets. While the goal and target application of this work is to group unlabelled video datasets,
for analysis purposes only, we use datasets that contain human annotated labels. The datasets range
from small- to large-scale: The first is the recently released VGG-Sound [17], which contains
around 200k videos obtained in the wild from YouTube with low labelling noise and covering 309
categories of general classes. The second dataset is Kinetics-400 [41], which contains around 230k
videos covering 400 human action categories. Third, we test our results on Kinetics-Sound pro-
posed in [3], formed by filtering the Kinetics dataset to 34 classes that are potentially manifested
visually and audibly, leading to 22k videos. Lastly, we use the small-scale AVE Dataset [68], orig-
inally proposed for audio-visual event localization and containing only around 4k videos. Among
these, only VGG-Sound and Kinetics-400 are large enough for learning strong representations from
scratch. We therefore train on these datasets and unsupervisedly finetune the VGG-Sound model on
Kinetics-Sound and AVE.

Training details. Our visual encoder is a R(2+1)D-18 [70] network and our audio encoder is a
ResNet [32] with 9 layers. For optimization, we use SGD for 200 epochs with weight decay of 107>
and momentum of 0.9, further implementation details are provided in Appendix A.2.

Table 1: Architectures and pretraining datasets. We use state-of-the-art representation learning
methods and combine pretrained representations with k-means as baselines in the Tables 5a to 5d.

Method Input shape  Architecture  Pretrain dataset
Supervised 32x3x112x 112 R2+1)D-18 Kinetics-400
DPC [30] 40 x 3 x 224 x 224 R3D-34 Kinetics-400
MIL-NCE [52] 32 x 3 x 224 x224 S3D HowTo100M
XDC [2] 32 x 3 x 224 x 224 R(2+1)D-18  Kinetics-400

Baselines. To compare our method on this novel task of clustering these datasets, we obtained
various pretrained video representations (DPC [30], MIL-NCE [52]and XDC [2]), both supervised6
and self-supervised (see Table 1 for details). For comparison, following [79], we run k-means on
the global-average-pooled features, setting % to the same number of clusters as our method to ensure
a fair comparison. For the k-means algorithm, we use the GPU accelerated version from the Faiss
library [40].

Evaluation. We adopt standard metrics from the self-supervised and unsupervised learning lit-
erature: the normalized mutual information (NMI), the adjusted rand index (ARI) and accuracy
(Acc) after matching of the self-supervised labels to the ground truth ones (for this we use the
Kuhn—-Munkres/Hungarian algorithm [45]). We also report the mean entropy and the mean maximal
purity per cluster, defined in Appendix A.4, to analyze the qualities of the clusters. For comparability
and interpretability, we evaluate the results using the ground truth number of clusters — which usually
is unknown — but we find our results to be stable w.r.t. other number of clusters (see Appendix).

5The R(2+1)D-18 model from PyTorch trained on Kinetics-400 [41] from https://github.com/
pytorch/vision/blob/master/torchvision/models/video/resnet.py.
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4.1 Technical Analysis

Multi-modality. In order to shed light on the nature of labelling a multi-modal dataset, we provide
a detailed study of the use and combination of modalities in Table 2. While visual-only methods
such as the Kinetics-400 supervisedly pretrained model, MIL-NCE or DPC cannot work when only
audio-stream (49) is provided, we show the results for XDC and our method when a single or both
modalities are provided. In particular, we find that even when only the visual-stream (@) is present
at test-time, our method (57% NMI) already outperforms methods solely developed for represen-
tation learning, even surpassing the 100M videos with transcripts trained MIL-NCE (49% NMI).
When only the audio-stream is used, our method’s performance drops only slightly, congruent with
the balanced informativeness of both modalities in our method. Finally, when both modalities are
used, we find that our method profits from both, such that the combined performance is significantly
higher than the maximal performance of each single modality alone.

Degraded modality. In Fig. 2, we analyze how well our method fares when the quality of one
modality is reduced. For this, we compress the video-stream by down and upsampling of the video
resolution by factors 1, 4, 8 and 16 (details are provided in Appendix A.5). Even though our method
has not been trained with compressed videos, we find that its performance degrades more gracefully
than the baselines indicating it has learned to rely on both modalities.

Ablation. Next, we ablate the key parameters of our method and show how they each contribute to
the overall clustering quality in Table 3. First, we show a baseline model in Table 3(a), when naively
applying the publically available source-code for SeLa [6] on video frames (), this yields a NMI
of 20%. Compared to this frame-only method, in row (b), we find the results for concatenating the
features of both modalities (followed by a single clustering head) to only lead to a small improve-
ment upon the frame-only method with a NMI of 25%. Our method is shown in row (c), where we



Table 5: Unsupervised labelling of datasets. We compare labels from our method to labels that are
obtained with k-means on the representations from a supervised and various unsupervised methods
on four datasets.

(a) VGG-Sound. (b) AVE.
Method  NMI ARI Acc. (H) (pmax) Method  NMI ARI Acc. (H) (pPmax)
Random 102 40 22 49 3.5 Random 92 13 93 29 126
Supervised 46.5 15.6 243 29 30.8 Supervised 58.4 34.8 50.5 1.1 60.6
DPC 154 07 32 47 4.9 DPC 184 50 151 27 175
XDC 18.1 12 45 441 7.4 XDC 171 6.0 164 26 19.1
MIL-NCE 48.5 12.5 220 26 329 MIL-NCE 56.3 30.3 426 1.2 57.1
SeLaVi 559 21.6 310 25 363 SeLaVi 66.2 474 579 11 593

(c) Kinetics. (d) Kinetics-Sound.
Method NMI ARI Acce. (H) (pmax) Method NMI ARI Acce. (H) (pPmax)
Random 11.1 02 1.8 5.1 3.3 Random 28 05 59 33 8.3
Supervised 70.5 434 549 1.6 62.2 Supervised 81.7 66.3 75.0 0.5 854
DPC 16.1 06 27 49 3.9 DPC 88 22 96 31 136
XDC 172 0.8 34 47 6.2 XDC 75 19 94 31 13.6
MIL-NCE 489 12.5 235 2.7 337 MIL-NCE 47.5 240 37.8 1.5 51.0
SeLaVi 271 34 78 48 9.4 SeLaVi 47.5 28.7 412 18 455

find a substantial improvement with a NMI of 52%, i.e. a relative gain of more than 100%. While
part of the gain comes from multi-modality, especially compared to row (b), the largest gain comes
from the ability of our method in exploiting the natural correspondence provided in the multi-modal
data. Finally, by ablating the technical improvements in rows (d)-(f) we find the strongest gain to be
coming decorrelated heads, followed by the audio-visual modality alignment (MA) procedure, and
that each improvement indeed benefits the model. To analyze the gains obtained by using multiple
heads, we have also computed the average NMI between all pairs of heads as (77.8 = 4%). This
means that the different heads do learn fairly different clusterings (as NMI takes permutations into
account) whilst being at a similar distance to the ‘ground-truth’ (53.1 + 0.1%).

4.2 Unsupervised labelling audio-visual data

Table 5 shows the quality of the labels obtained automatically by our algorithm. We find that for
the datasets VGG-Sound, Kinetics-Sound, and AVE, our method achieves state-of-the-art clustering
performance with high accuracies of 55.9%, 41.2%, 57.9%, even surpassing the one of the strongest
video feature encoder at present, the manually-supervised R(2+1)D-18 network. This result echoes
the findings in the image domain [72] where plain k-means on representations is found to be less
effective compared to learning clusters. For Kinetics-400, we find that the clusters obtained from
our method are not well aligned to the human annotated labels. This difference can explained by the
fact that Kinetics is strongly focused on visual (human) actions and thus the audio is given almost
no weighting in the annotation. We encourage exploring our interactive material, where our method
finds clusters grouped by similar background music, wind or screaming crowds. We stress that such
a grouping is ipso facto not wrong, only not aligned to this set of ground truth labels.

4.3 Labelling helps representation learning

Finally, we show how the visual feature representations unsupervisedly obtained from our method
perform on downstream tasks. While not the goal of this paper, we test our representation on a stan-
dardized video action retrieval task in Table 4 and also provide results on video action classification
in Table A.3, and refer to the Appendix for implementation details. We find that in obtaining strong
labels, our method simultaneously learns robust, visual representations that can be used for other
tasks without any finetuning and significantly improve the state of the art by over 100% for Recall
@1 on UCF-101 and HMDB-51.



5 Conclusion

In this work, we have established strong baselines for the problem of unsupervised labelling of
several popular video datasets; introduced a simultaneous clustering and representation learning ap-
proach for multi-modal data that outperforms all other methods on these benchmarks; and analysed
the importance of multi-modality for this task in detail. We have further found that strong represen-
tations are not a sufficient criterion for obtaining good clustering results, yet, the strongest feature
representations remain those obtained by supervised, i.e. well-clustered training. We thus expect the
field of multi-modal clustering to be rapidly adopted by the research community who can build upon
the presented method and baselines.

Broader Impact

We propose a method for clustering videos automatically. As such, we see two main areas of poten-
tial broader impact on the community and society as a whole.

Few-label harmful content detection. Our method clusters a video dataset into multiple sets of
similar videos, as evidenced by the audio- and visual-stream and produces consistent, homogenous
groupings. In practice, unsupervised clustering is especially useful for reducing the amount of data
that human annotators have to label, since for highly consistent clusters only a single label needs
to be manually obtained which can be propagated to the rest of the videos in the cluster. Using
such an approach for the purpose of detecting harmful online content is especially promising. In
addition, label-propagation might further lead to a beneficial reduction of type I errors (saying a
video is safe when it is not). Furthermore, the multi-modality of our method allows it to potentially
detect harmful content that is only manifested in one modality such as static background videos
of harmful audio. Multi-modal harmful content detection has also been a subject of a recent data
challenge that emphasizes insufficiency of using a single modality’. Lastly, the generality of our
method allows it to also scale beyond these two modalities and in the future also include textual
transcripts. Given the importance of this topic, it is also important to acknowledge, while less of a
direct consequence, potential biases that can be carried by the dataset. Indeed models trained using
our method will inherit the biases present in the dataset, which could be known but also unknown,
potentially leading to propagation of biases without a clear way to analyze them, such as via labels.
However, given the numerous pitfalls and failures when deploying computer vision systems to the
real world, we believe that the positive impact of foundational research on public datasets, such as
is presented in this paper, far outweighs these risks lying further downstream.

Overestimating clustering quality. The main benefit of our approach is to reduce the cost of
grouping large collections of video data in a ‘meaningful’ way. It is difficult to think of an applica-
tion where such a capability would lead directly to misuse. In part, this is due to the fact that better
clustering results can generally be obtained by using some manual labels, so even where cluster-
ing videos could be misused, this probably would not be the method of choice. Perhaps the most
direct risk is that a user of the algorithm might overestimate its capabilities. Clustering images is
sometimes done in critical applications (e.g. medical science [36, 38, 50]). Our method clusters data
based on basic statistical properties and the inductive prior of convolutional neural networks, with-
out being able to tap into the deep understanding that a human expert would have of such domain
expertise. Hence, the clusters determined by our method may not necessarily match the clusters an
expert would make in a particular domain. Further, as the method is unsupervised, it may learn to
exploit biases present in the data that might not be desired by the users. While we believe it has
potential to be broadly applied after being finetuned to a specific domain, at present, our method is
a better fit for applications such as indexing personal video collections where clustering ‘errors’ can
be tolerated.
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A Appendix

A.1 Pretrained model details

Here we provide additional information about the pretrained models we have used in this work.

Table A.1: Details for audio encoder. Architectural and pretraining details for XDC’s audio en-
coder used for benchmarking.

Method Input shape Architecture  Pretrain dataset
XDC 40 x 1 x 100  Resnet-18 Kinetics-400

A.2 TImplementation details

We train our method using the Sinkhorn-Knopp parameter A = 20, an inverse quadratic clustering
schedule with 100 clustering operations and 10 heads which we adopt from [6]. For evaluation, we
report results for head 0 to compare against the ground-truth, as we found no significant difference
in performance between heads. For the Gaussian distribution, we take the marginals to be from
N(1,0.1) * N/K. For the clustering-heads, we use two-layer MLP-heads as in [8, 18]. The video
inputs are 30 frame long clips sampled consecutively from 30fps videos and are resized such that
the shorter side is 128 and during training a random crop of size 112 is extracted, no color-jittering
is applied. Random horizontal flipping is applied to the video frames with probability 0.5, and
then the channels of the video frames are Z-normalized using mean and standard deviation statistics
computed across the dataset. The audio is processed as a 1 x 257 x 199 image, by taking the log-
mel bank features with 257 filters and 199 time-frames and for training, random volume jittering
between 90% and 110% is applied to raw waveform, similar to [54]. For evaluation, a center-crop
is taken instead for the video inputs and audio volume is not jittered. We use a mini-batch size of
16 on each of our 64 GPUs giving an effective batch size of 1024 for distributed training for 200
epochs. The initial learning rate is set to 0.01 which we linearly scale with the number of GPUs, after
following a gradual warm-up schedule for the first 10 epochs [28]. For training on Kinetics-Sound
and AVE, we initialize our model with a VGG-Sound pretrained backbone due to the small training
set sizes (/N = 22k and N = 3328). The clustering heads are re-initialized randomly. This ensures
a more fair comparison as XDC, DPC and the supervised model are pretrained on Kinetics-400 with
N = 230k and MIL-NCE on HowTol00M with N = 100M videos. We train on VGG-Sound for
200 epochs, which takes around 2 days.

A.3 Pair-based optimization for AV-Alignment

For aligning the visual and audio encoder, we use a greedy switching algorithm that starts from a
feasible initial solution [23, 24, 62]. In particular, we consider 50000 potential pair switches with 5
randomized restarts and take the final permutation that yields the lowest cost.

A.4 Evaluation metrics details

The normalized mutual information (NMI) is calculated by the formula

MI(U, V)

NMI =
0.5H(U) 4+ 0.5H(V)’

®)

j= P@)P(j)
and H is the standard entropy, with H(U) = — Zlfill P(i)log(P(i)). The NMI ranges from O (no
mutual information) to 100%, which implies perfect correlation.

where the Mutual information MI is given by MI(U, V) = Z‘fill Zlyl P(i,j)log (M)

The rand index (RI) is given by RI = ‘%rb, where a, b are the number of pairs of elements that are
in the same/different set in the ground truth labelling and in the same/different set in the predicted
clustering and C' is the total number of such pairs. The adjusted Rand index (ARI) corrects for
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random assignments and is given by

RI — E[RI]
Rl=—FF ——— 9
max(RI) — E[RI]’ ©
where the expected RI of a random label assignment is subtracted in both nominator and denomi-
nator. Due to the subtraction, the ARI varies from -1 to 1 with a value close to 0 implying random
correlation and a value of 1 implying identical agreement.

The mean entropy per cluster is given by

1 N
(H) =2 > H(plylin = k), (10)
keK
where ¢ are unsupervisedly obtained clusters and p(y|jx = k) is the distribution of ground-truth
clusters for cluster k. Hence, the optimal number of this metric is 0 and a chance assignment yields
(Hy =—1ogl/K.

Further, as we wish to understand the semantic purity compared to the ground truth labels of each
cluster, so we additionally report the the mean maximal purity per cluster,

1
(Pmax) = 32 kZ max(p(yljr = k), (11
€K

which ranges from (pmax) = 1/K (chance level) to perfect matching at {(pmax) = 100%.

A.5 Single modality degradation experiment details

We use the default input-sizes for each model, i.e. 112 for ours and the supervised model, 224
for MIL-NCE. Compression is implemented by nearest-neighbor downsampling and subsequently
nearest-neighbor upsamling for speed. For this experiment only, we evaluate the performance on the
smaller validation sets.

A.6 Further ablations

In Table A.2, we provide the results for varying the number of clusters K in our algorithm. We
find that even when moving from the ground-truth number of classes (KX = 309), to lower numbers
(K = 256) or higher estimates (K = 619, 1024) our results remain stable with the NMI staying
almost constant. While the ARI does drop for larger K, we also observe an increase in the purity of
the clusters for a larger number of clusters from (ppax) = 38.0 for K = 309 to (pmax) = 42.7 for
K = 619, which can be particularly useful when dividing the dataset into clusters and subsequently
only obtaining human annotations for few examples per cluster.

Table A.2: Varying K in our method degrades performances only slightly, showing that our method
is robust to various estimations of the ground-truth number of classes. Results on VGG-Sound.

Method K NMI ARI Acc. (H) (Pmax)
SeLaVi 309 56.7 225 323 24 380

SeLaVi 256 56.8 243 342 24 369
SeLaVi 619 569 16.8 23.0 22 427
SeLaVi 1024 55.1 163 9.6 2.1 422

A.7 Retrieval downstream task implementation details

We follow [78] in our evaluation protocol and use split 1 of UCF101 and HMDB-51. We uniformly
sample 10 clips per video, and average the max-pooled features after the last residual block for each
clip per video. We then utilize the averaged features from the validation set to query the videos in
the training set. The cosine distance of representations between the query clip and all clips in the
training set are computed and when the class of a test clip appears in the classes of k nearest training
clips, it is considered to be correctly retrieved. R@F refers to the retrieval performance using k
nearest neighbors.
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A.8 Visual classification downstream task

Table A.3: Representation learning downstream evaluation. Self-supervised and fully-
supervised trained methods on UCF101 and HMDBS51 benchmarks. We follow the standard pro-
tocol and report the average top-1 accuracy over the official splits and show results for finetuning
the whole network. Methods with T indicate the additional use of video titles and ASR generated
text as supervision. Methods with * use ASR generated text.

Method Architecture Pretrain Dataset  Top-1 Acc%
UCF HMDB
Full supervision [2] R(2+1)D-18 ImageNet 82.8 46.7
Full supervision [2] R(2+1)D-18 Kinetics-400 93.1 63.6
Weak supervision, CPD [49]1 3D-Resnet50 Kinetics-400 88.7 57.7
MotionPred [73] C3D Kinetics-400 61.2 334
RotNet3D [39] 3D-ResNet18 Kinetics-600 62.9 337
ST-Puzzle [42] 3D-ResNet18 Kinetics-400 65.8 33.7
ClipOrder [78] R(2+1)D-18 Kinetics-400 72.4 309
DPC [30] 3D-ResNet34 Kinetics-400 757 35.7
CBT [66] S3D Kinetics-600 79.5 44.6
Multisensory [58] 3D-ResNet18 Kinetics-400 82.1 -
XDC [2] R(2+1)D-18 Kinetics-400 842 47.1
AVTS [43] MC3-18 Kinetics-400 85.8 56.9
AV Sync+RotNet [76] AVSlowFast Kinetics-400 87.0 54.6
GDT [60] R(2+1)D-18 Kinetics-400 88.7 57.8
SeLaVi R(2+1)D-18 Kinetics-400 83.1 47.1
SeLaVi RQ2+1)D-18 VGG-Sound 877 53.1

In Table A.3 we show the performance of our method on two common visual-only video feature
representation benchmarks, UCF-101 [65] and HMDB-51 [44]. Note that, as is the standard in
this evaluation, we use our visual encoder as initialization and fine-tune the whole network on the
target down-stream task. In particular, we follow the finetuning schedule of the one of the current
state-of-the-art methods [60]. We find that we achieve competitive performance when trained on
VGG-Sound, even surpassing XDC, despite our method using only a spatial resolution of 112 x 112
and not 224 x 224.
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Discussion

In this chapter, we summarize the main achievements and impact of the work presented

in this thesis (Section 9.1), and then suggest areas for future work (Section 9.2).

9.1 Achievements and Impact

In this thesis, we have presented a number of contributions to improve representation
learning performance from unlabelled multi-modal data, and additionally, enable greater
interepretability of deep representations. At the time of submission in June 2021, the
work in this thesis has been cited over 200 times according to Google Scholar, and

we attempt to contextualize our contributions and impact below.

GDT (chap. 2) served as the foundation for the majority of the work in this thesis. The
key findings in GDT were the importance of extremely large-scale data for pretraining
of video representations, the choice of data transformations, in particular, transforming
the input data to look at multiple modalities (in this case, audio, images, and text),
and the use of noise-contrastive (NCE) training for multi-modal self-supervision. In

subsequent chapters, we attempted to explore each of these axes even further.
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GDT demonstrated the benefits of very large-scale pretraining of multi-modal video
representations by showing clear performance improvements when trained on millions
of video clips from the HT100M [Miech et al., 2019] and IG65M [Ghadiyaram et al.,
2019] datasets. The success of very large-scale pretraining in GDT inspired our use of
the HT100M dataset in subsequent works on video-text representation learning such
as SSB (chap. 4) and MMP (chap. 5), where we saw similar gains in performance
on the video-text retrieval task. GDT has inspired a few works in the literature
to collect and leverage very large-scale multi-modal video data to improve video
representations [Akbari et al., 2021; Lee et al., 2021]. Furthermore, GDT has influenced
the use of large-scale multi-modal pretraining in an industrial setting to improve content

recommendations for Instagram Reels [Zweig et al., 2021].

While noise contrastive training [Hadsell et al., 2006; Gutmann and Hyvérinen, 2010]
has lead to breakthroughs in self-supervised learning in the image domain [Chen et al.,
2020; Misra and van der Maaten, 2020; He et al., 2020] by encoding invariance to
differently cropped versions of the image, GDT was one of the first works (along
with concurrent works Tian et al. [2020]; Miech et al. [2020]) to show its benefits for
learning multi-modal representations. All of our subsequent works in representation
learning have leveraged variants of this loss. Since being ArXived in March 2020,
our work has inspired a range of works using noise contrastive training for multi-
modal self-supervision: video-audio [Ma et al., 2021a,b; Pedro Morgado, 2021; Kalayeh
et al., 2021], video-audio-text [Akbari et al., 2021] and even multi-modal 3D [Zhang

et al., 2021] representation learning.

In addition to large-scale pretraining and noise contrastive training, another major axis
we explored in this thesis was the importance of the choice of data transformations.
In STiCA (chap. 3), we were interested in whether effective data transformations
in the image domain were also important for video representation learning. In
particular, taking multiple spatial crops of an image and enforcing invariance using
a noise contrastive loss have proven to be very effective in image representation

learning [Chen et al., 2020; Caron et al., 2020]. Unlike GDT, where we solely did
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cross-modal comparisons, STiCA attempted to improve the cross-modal GDT baseline
by additionally incorporating a within-modal contrastive loss from multiple spatial
crops. We struggled to fit more than 2 crops in memory, particularly in a multi-modal
setup, and this inspired taking crops in the feature space to reduce memory demands,
while simultaneously increasing the number of crops we can use for NCE comparisons.
Dubbed Feature Crop, we are excited for this to be incorporated in more representation

learning works along with other feature-level augmentations [Kalantidis et al., 2020].

Given the success of extracting audio and visual modality as a data transformation for
improving representation learning performance in GDT and STiCA, we then attempted
to explore other multi-modal transformations for video representation learning. In
particular, we were interested in whether having annotations in multiple languages
can improve video-text representation learning. This led to MMP (chap. 5), where
we showed that pretraining video-text representations with videos with annotations
in multiple languages can lead to performance improvements compared to simply
doing English-only video-text pretraining. To encourage more research in this area,
we have publicly released a new dataset, Multi-HT100M, where we provide captions
in 9 languages for most of the videos in the HT100M dataset [Miech et al., 2019].
Multi-lingual multi-modal representation learning is an exciting direction of research
as it can open up opportunities to not only train better video-text representations, but

also make searching video content on the Internet more accessible to a wider population.

While working on MMP, we found the use of the transformer architecture [Vaswani
et al., 2017] to be extremely effective for aggregating information from sequences of
both visual and textual features. This transformer pooling layer significantly improved
upon the standard max and mean pooling approaches that were commonplace in the
video-text literature [Liu et al., 2019]. The success of transformer pooling inspired
our use of this layer in both STiCa (chap. 3) and Support-Set (chap. 4) as a late
aggregation layer and we found it to be quite important for improving representation
learning performance. This then lead to our follow-up work, Motionformer (chap. 6),

where instead of using the transformer just as a late temporal aggregation block, we



9. Discussion

attempted to replace the entire 3D-CNN backbone with a transformer, inspired by
ViT [Dosovitskiy et al., 2021]. While the default self-attention block is very generic,
it treats both the space and time dimensions in videos equally, which we argue is
sub-optimal for modeling motion in videos. We proposed a new form of self-attention,
trajectory attention, which aggregates features along implicitly determined motion
paths, serving as a better inductive bias for video transformers. Given our initial results
and other evidence in the literature [Fan et al., 2021; Arnab et al., 2021; Bertasius
et al., 2021], we believe that the transformer, along with our trajectory attention block,

will be an important component of video architectures used for representation learning.

Lastly, we were interested in how contrastive learning can be improved, given that
its instance discrimination assumption is quite strong. We explored how using an
attention-weighted reconstruction objective can be used as an auxiliary loss to extract
shared semantics across videos (chap. 4), helping to alleviate the strictness of instance
discrimination contrastive learning. While this approach does require a suitable
text generator to work, we show it to be very effective for improving video-text

representation learning.

In addition to representation learning, this thesis also explored how to make it
easier to interpret deep representations. We developed the extremal perturbation
framework (chap. 7) to understand the salient pixels and channels that are important
for classification. Perturbation analysis is a very principled approach to the attribution
problem, since it tries to directly estimate how changes in the input impact the output
of the neural network. Several works have built upon our perturbation framework
for interpreting deep image representations [Cooper et al., 2021; Yang et al., 2021;
Khorram et al., 2021], and our work has even been extended to new domains such

as explaining video networks [Li et al., 2021].

To develop more tools for interpretability, particularly in line with our work on
multi-modal representation learning, we also explored how to automatically map
multi-modal representations to human interpretable labels using clustering (chap. 8).

In the case of multi-modal data, clustering is not trivial because clustering data
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from multiple modalities, such as audio and video, can usually lead to two different
sets of clusters [Alwassel et al., 2020]. In SeLaVi, we show how to solve this issue
by viewing each modality as an augmentation of a common, latent concept, thus
learning a single label for all the modalities of an input. Our work has since inspired
a number of works that attempt to jointly cluster representations from multiple
modalities [Brown et al., 2021; Chen et al., 2021]. Our method also serves as the
clustering module in recent work on self-supervised object detection from unlabelled

multi-modal videos [Afouras et al., 2021].

9.2 Future Work

Here we present a few areas that are exciting directions for our work:

Extreme multi-modal self-supervision. In this thesis, we have explored pairs
of modalities (video-audio, video-text) for multi-modal self-supervision. While the
combination of video, audio and text modalities have been used for multi-modal
self-supervision [Alayrac et al., 2020; Akbari et al., 2021], we think that there is
an opportunity to train representations from an even larger number of modalities
such as optical flow and depth in tandem. Different modalities may capture different
semantic features of the input and can lead to a better representation if the model
can effectively correlate these signals. However, learning from an extreme number of
modalities is also challenging because different modalities may have different semantic
strengths and granularity [Kazakos et al., 2019; Alayrac et al., 2020] and learning
speeds [Xiao et al., 2020; Wang et al., 2020]. There are also the challenges of training
multiple modality encoders end-to-end using GPU memory, but recent advances in

chip development [Warren and Vincent, 2020] may help mitigate this problem.

Joint Video and Image representations. As explored in depth in this thesis,
video data is perfect for learning representations. The temporal dimension of video

allows for multiple viewpoints of objects, and its rich multi-modal information offers
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the opportunity to learn very semantic representations. However, most works that train
representations on video data have been unable to push the state-of-the art in the image
domain [Wu and Wang, 2021; Gordon et al., 2020; Purushwalkam and Gupta, 2020;
Wang et al., 2019¢]. Learning joint image and video representations from video data
that can be applied to both image and video tasks is still a core challenge, however, we
do think recent advances with the transformer architecture [Vaswani et al., 2017] will
unlock this capability because image and video data can be tokenized in a consistent

way [Bertasius et al., 2021] thus allowing for mixed dataset training [Bain et al., 2021].

Using Interpretability Techniques To Improve Self-Supervised Learning.
To understand the bottlenecks in self-supervised learning, there has been embryonic
research into understanding what type of representations are learnt using different
self-supervised pretext tasks [Asano et al., 2020a] and how they differ compared to
supervised pretraining [Epstein et al., 2020]. Using interpretability techniques such
as feature visualization [Mahendran and Vedaldi, 2015], these works show that early
self-supervised learning approaches such as rotation [Gidaris et al., 2018] are most
effective at learning low-level features such as edge detectors, but struggle at higher-level
semantic tasks such as object and scene classification. With self-supervised learning,
there is a need to better and more precisely understand the relationship between the
training paradigm and the representations learned, beyond just the performance on
downstream tasks. Interpretability research has historically been constrained to the
fully supervised domain [Zhang et al., 2017; Selvaraju et al., 2019], but given that this
is not necessarily the current direction of the field, nor is it the way most mammals

learn, it is important to expand and ground it in the self-supervised regime.
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